З точки до прямої проведено дві по- хилі, різниця довжин яких дорівнює 7 см. Знайдіть відстань від точки до прямої, якщо проекції похилих дорів- нюють 5 см і 16 см,
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
Дано: АВСD - ромб, S = 96 см², BD = 4x, AC = 3x, Знайти: Pabcd. Решение: Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см. С прямокутного трикутника АОВ: АО = 6 см, ВО = 8см. За т. Піфагора:
Треугольник, периметр которого равен 18 см, длится биссектрисой на два треугольника, периметр которых равны 12 см и 15 см. Найдите биссектрису этого треугольника.
(И напишите условие задачи
Объяснение:
Дано : ΔАВС, АД-биссектриса, Д∈ВС. Р( АВС)=18 см, Р(АДВ)=12 см,
Р (АДС)=15 см.
Найти : длину отрезка АД.
Решение.
Р(АДВ)=АВ+ВД+ДА=12
Р (АДС)=АС+СД+ДА=15 . Получили систему :
[АВ+ВД+ДА=12
{АС+СД+ДА=15 сложим почленно и учтем, что ВД+СД=ВС.
АВ+АС+ВС+2*ДА=27 ,
Р( АВС)+2*ДА=27 ,
18+2*ДА=25 ,
2*ДА=9 ,
ДА=4,5 см .
Знайти: Pabcd.
Решение:
Нехай коефіцієнт пропорційності буде х, тоді діаголналі АС і BD дорівнюють відповідно 3х см і 4х см. Площа ромба - 96 см²
Коефіцієнт пропорційності 4см, а діаголі тоді будуть - 4х=4*4=16 см і 3х=3*4= 12см.
Діагоналі АС і BD перетинаються в точці О. Діагоналі ромба рівні, звідси: АО=ОС = АС/2=12/2 = 6см, ВО = OD = BD/2 =16/2 = 8см.
С прямокутного трикутника АОВ:
АО = 6 см, ВО = 8см.
За т. Піфагора:
Периметр ромба дорівнює добутку 4 сторін
Відповідь: 40 см.