З точки до прямої проведено дві похилі. Довжина однієї з них 30 см а довжина її проекції дорівнює 18 см. Знайти довжину другої похилої, якщо її проекція дорівнює 15 см
Дано: правильная четырехугольная призма, => основание призмы - квадрат S квадрата = а², а - сторона квадрата D=25 см H=15 см
1. прямоугольный треугольник: гипотенуза D=25 см - диагональ правильной четырехугольной призмы катет Н = 15 см - высота правильной четырехугольной призмы катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
В треугольнике abc известно что ab=bc, ac = 8 см, AD - медиана, BE - высота, BE = 12 см, Из точки D опущено перпендикуляр DF на сторону AC. Найдите отрезок DF и угол ADF. ВЕ - высота равнобедренного треугольника, значит ВЕ - медиана этого треугольника.АЕ=ЕС. DF - перпендикуляр к АD, то есть DF параллельна ВЕ и является средней линией треугольника ВЕС, так как точка D - середина стороны ВС (АD- медиана - дано). Тогда DF=(1/2)*BE=6 см. ЕF=(1/2)*ЕС или EF=8:2=4см. AF=АЕ+ЕF или АF=4+2=6. Тангенс угла ADF - это отношение противолежащего катета к прилежащему, то есть td(ADF)=AF/DF=1. <ADF=45°. ответ: отрезок DF=6см, <ADF=45°.
основание призмы - квадрат
S квадрата = а², а - сторона квадрата
D=25 см
H=15 см
1. прямоугольный треугольник:
гипотенуза D=25 см - диагональ правильной четырехугольной призмы
катет Н = 15 см - высота правильной четырехугольной призмы
катет d - диагональ основания правильной четырехугольной призмы, найти по теореме Пифагора
D²=H²+d²
25²=15²+d², d²=25²-15², d²=625-225. d²=400
2. прямоугольный треугольник:
катет а= катету b
гипотенуза d (диагональ квадрата)
по теореме Пифагора:
a²+a³=d³, 2a²=d²
2a²=400
a²=200, => S квадрата =200 см²
ответ:
площадь основания правильной четырехугольной призмы =200 см²
ВЕ - высота равнобедренного треугольника, значит ВЕ - медиана этого треугольника.АЕ=ЕС. DF - перпендикуляр к АD, то есть DF параллельна ВЕ и является средней линией треугольника ВЕС, так как точка D - середина стороны ВС (АD- медиана - дано). Тогда
DF=(1/2)*BE=6 см. ЕF=(1/2)*ЕС или EF=8:2=4см.
AF=АЕ+ЕF или АF=4+2=6. Тангенс угла ADF - это отношение противолежащего катета к прилежащему, то есть td(ADF)=AF/DF=1. <ADF=45°.
ответ: отрезок DF=6см, <ADF=45°.