З точки до прямої проведено перпендикуляр і похилу, яка утворює з прямою кут 60°. Знайдіть перпендикуляр і проєкцію похилої, якщо довжина похилої 12 см. До іть зробити!
Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.
Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
ВС= 6 см; P=15 см; S=5√3 см²; R= 2√3 см.
Объяснение:
Пусть дан треугольник АВС, в котором АВ= 4 см, АС = 5 см , ∠А=60°.
Найдем сторону ВС по теореме косинусов: квадрат любой стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними.
ВС²=АВ²+АС²-2·АВ·АС·sinA;
\begin{gathered}BC^{2} =4^{2} +5^{2} -2\cdot4\cdot 5\cdot cos60^{0} ;BC^{2} =16+25-2\cdot20\cdot \dfrac{1}{2} ;\\BC^{2} =16+25-5;\\BC^{2}=36;\\BC=6.\end{gathered}
BC
2
=4
2
+5
2
−2⋅4⋅5⋅cos60
0
;
BC
2
=16+25−2⋅20⋅
2
1
;
BC
2
=16+25−5;
BC
2
=36;
BC=6.
Тогда ВС= 6 см
Периметр треугольника - сумма длин всех сторон треугольника.
\begin{gathered}P=AB+AC+BC;\\P=4+5+6=15\end{gathered}
P=AB+AC+BC;
P=4+5+6=15
см.
Найдем площадь треугольника по формуле.
\begin{gathered}S=\dfrac{1}{2} \cdot AB\cdot AC\cdot sin60^{0} ;S=\dfrac{1}{2}\cdot 4\cdot 5\cdot \dfrac{\sqrt{3}}{2} =5\sqrt{3}\end{gathered}
S=
2
1
⋅AB⋅AC⋅sin60
0
;
S=
2
1
⋅4⋅5⋅
2
3
=5
3
см².
Радиус окружности, описанной около треугольника определим по формуле.
R=\dfrac{a}{2\cdot sin\alpha }R=
2⋅sinα
a
R=\dfrac{6}{2\cdot sin 60^{0} } =\dfrac{6}{2\cdot\dfrac{\sqrt{3} }{2} } =\dfrac{6}{\sqrt{3} } =\dfrac{6\sqrt{3} }{3} =2\sqrt{3} .R=
2⋅sin60
0
6
=
2⋅
2
3
6
=
3
6
=
3
6
3
=2
3
.
R=2√3 см.
Sc = d²·tgα·√2/(2+tgα).
Sб = 4d²·tgα/(2+tgα).
So = d²/(2+tgα).
So =
Объяснение:
Призма правильная, значит в основании лежит квадрат. Пусть сторона квадрата равна "а". Тогда диагональ квадрата равна а√2.
Высота призмы равна h = a·tgα (из прямоугольного треугольника - половины боковой грани).
Квадрат диагонали призмы d² = h²+2a². (из прямоугольного треугольника - половины диагонального сечения).
d² = a²·tg²α+2a² = a²(2+tgα). => a = d/(√((2+tgα)).
h = a·tgα = d·tgα/(√((2+tgα)).
Тогда площадь диагонального сечения равна:
Sc = a√2·h = d√2/(√(2+tgα))·dtgα/(√(2+tgα)) = d²·tgα·√2/(2+tgα).
Площадь боковой поверхности равна произведению периметра основания на высоту призмы:
Sб = 4·a·h = 4d/(√((2+tgα))·d·tgα/(√((2+tgα)) = 4d²·tgα/(2+tgα).
Площадь основания (квадрата) равна квадрату стороны:
So = a² = d²/(2+tgα).