1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
angelikaliaka
08.12.2014
Геометрия
10 - 11 классы
+18 б.
ответ дан
сторона основания правильной четырехугольной пирамиды равна 6 см, высота - 4 см. Найти площадь полной поверхности.
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
7
Hrisula
главный мозг
7.5 тыс. ответов
16.7 млн пользователей, получивших
Обозначим пирамиду МАВСД.
Основание - квадрат со стороной 6 см. Высота МО=4 см.
МН- апофема ( высота боковой грани правильной пирамиды).
Площадь полной поверхности пирамиды - сумма площади основания и боковой поверхности.
S (бок)=0,5•Р•МН
Через основание высоты проведем КН║СВ.
КН⊥АВ. КН=ВС=6
ОН=КН:2=3
Из прямоугольного ∆ МОН по т.Пифагора
МН=5 см
S(бок)=0,5•4•6•5:2=60 см²
S(АВСД)=6²=36 см²
S(полн)=36+60=96 см²
ответ: S=45,84(ед²)
Объяснение:
Проведём ещё высоту АН. Она делит трапецию так на прямоугольный треугольник АВН и прямоугольник ВСДН так, что НД=ВС, а также ВН=СД=4.
Рассмотрим ∆АВН. В нём угол А=30°, а катет ВН, лежащий напротив него равен половине гипотенузы АВ (свойство угла 30°) поэтому АВ=ВС=НД=4×2=8.
Найдём АН по теореме Пифагора:
АН²=АВ²–ВН²=8²–4²=64–16=48
АН=√48=4√3
Тогда АД=АН+НД=4√3+8
Площадь трапеции вычисляется по
формуле:
S=(ВС+АД)÷2×4=8+(8+4√3)×4/2=
=(8+8+4√3)×2=(16+4√3)2=32+8√3(ед²)
Можно так и оставить, а можно вычислить приблизительное значение, вычислив √3. √3≈1,73 - поставим это значение:
32+8√3=32+8×1,73=32+13,84=45,84(ед²)
ПЕРВЫЙ РИСУНОК С ВАШЕГО ДОКУМЕНТА
1
Избавься от ограничений
ПОПРОБУЙ ЗНАНИЯ ПЛЮС СЕГОДНЯ
angelikaliaka
08.12.2014
Геометрия
10 - 11 классы
+18 б.
ответ дан
сторона основания правильной четырехугольной пирамиды равна 6 см, высота - 4 см. Найти площадь полной поверхности.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ, проверенный экспертом
4,0/5
7
Hrisula
главный мозг
7.5 тыс. ответов
16.7 млн пользователей, получивших
Обозначим пирамиду МАВСД.
Основание - квадрат со стороной 6 см. Высота МО=4 см.
МН- апофема ( высота боковой грани правильной пирамиды).
Площадь полной поверхности пирамиды - сумма площади основания и боковой поверхности.
S (бок)=0,5•Р•МН
Через основание высоты проведем КН║СВ.
КН⊥АВ. КН=ВС=6
ОН=КН:2=3
Из прямоугольного ∆ МОН по т.Пифагора
МН=5 см
S(бок)=0,5•4•6•5:2=60 см²
S(АВСД)=6²=36 см²
S(полн)=36+60=96 см²
ответ: S=45,84(ед²)
Объяснение:
Проведём ещё высоту АН. Она делит трапецию так на прямоугольный треугольник АВН и прямоугольник ВСДН так, что НД=ВС, а также ВН=СД=4.
Рассмотрим ∆АВН. В нём угол А=30°, а катет ВН, лежащий напротив него равен половине гипотенузы АВ (свойство угла 30°) поэтому АВ=ВС=НД=4×2=8.
Найдём АН по теореме Пифагора:
АН²=АВ²–ВН²=8²–4²=64–16=48
АН=√48=4√3
Тогда АД=АН+НД=4√3+8
Площадь трапеции вычисляется по
формуле:
S=(ВС+АД)÷2×4=8+(8+4√3)×4/2=
=(8+8+4√3)×2=(16+4√3)2=32+8√3(ед²)
Можно так и оставить, а можно вычислить приблизительное значение, вычислив √3. √3≈1,73 - поставим это значение:
32+8√3=32+8×1,73=32+13,84=45,84(ед²)
ПЕРВЫЙ РИСУНОК С ВАШЕГО ДОКУМЕНТА