З точки М опущено перпендикуляр на площу бетта, точки c і d належить площині бета, МС дорівнює 10 см, MD 17 см, а відрізок ДО на 9 см більше за відрізок СО. знайдіть довжину перпендикуляра МО.
1)Точки M и M1 симметричны относительно некоторой точки O, если точка O является серединой отрезка MM1.Точка O называется центром симметрии. 2)Преобразование фигуры F в фигуру F1, при котором каждая точка A фигуры F переходит в точку A1, симметричную относительно данной точки O, называется преобразованием симметрии относительно точки O. Фигуры F и F1 называются фигурами, симметричными относительно точки O. 4)Если преобразование симметрии относительно точки O переводит фигуру в себя, то такая фигура называется центрально-симметричной, а точка O называется центром симметрии этой фигуры.
АВ-диаметр окружности, О-центр окружности. С -точка на окружности, СЕ-перпендикуляр на АВ, СЕ=24см. АЕ=а, ЕВ=с, с-а=14.
а+с -диаметр окружности, (а+с)/2-радиус окружности и ОС=ОА=радиус окруж.
Треугольник СЕО-прямоугольный , ОЕ=ОА-АЕ=((а+с)/2)-а=(а+с-2а)/2=(с-а)/2
По теореме Пифагора
ОЕ^2+СЕ^2=СО^2
((c-a)/2)^2+24^2=((c+a)/2)^2
c-a=14, значит с=14+а, подставим с в первое уравнение
((14+а-а)/2)^2+24^2=((14+а+а)/2)^2
7^2+576=(7+a)^2
49+14a+a^2=49+576
a^2+14a-576=0
дискрим Д=14^2+4*576=196+2304=2500
корень из Д=50
а1=(-14-50)/2=-32(не может быть отриц.)
а2=(-14+50)/2=18
с=14+18=32
радиус равен (с+а)/2=(18+32)/2=25
2)Преобразование фигуры F в фигуру F1, при котором каждая точка A фигуры F переходит в точку A1, симметричную относительно данной точки O, называется преобразованием симметрии относительно точки O. Фигуры F и F1 называются фигурами, симметричными относительно точки O.
4)Если преобразование симметрии относительно точки O переводит фигуру в себя, то такая фигура называется центрально-симметричной, а точка O называется центром симметрии этой фигуры.