З точки M поза площиною проведено до цієї площини перпендикуляр і похилу. Знаючи,що похила довша за перпенди- куляр на 25 см, а її проекція на площину дорівнює 65 см,знайдіть довжину по хилої.
Выразим заданныеточки через координаты А, В и С: К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2) Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5) М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у: {(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3 {(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3 {Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1) откуда находим Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему {-4+Ах = 3 {2+Ау = 4 и находим Ах = 7; Ау = 2 А(7;2)
Решение:
ВD- высота, медиана и биссектрисса равнобедренного треугольника ∆АВС;
АD=DC;
DC=AC/2=16/2=8ед.
∆ВDC- прямоугольный треугольник
Теорема Пифагора
ВD=√(BC²-DC²)=√(17²-8²)=
=√((17+8)(17-8))=√(25*9)=5*3=15ед.
ответ: х=15ед.
№6)
RN=NM=6ед ∆RNM-равносторонний;
RK- высота, медиана и биссектрисса.
NK=KM
NK=NM/2=6/2=3
∆RKN- прямоугольный треугольник
По теореме Пифагора
RK=√(RN²-NK²)=√(6²-3²)=
=√((6-3)(6+3))=√(3*9)=3√3ед.
ответ: х=3√3ед.
№7)
РТ=PR/2=x/2.
По теореме Пифагора
RP²-PT²=RT²
Составляем уравнение.
х²-(х/2)²=8²
х²-х²/4=64. |×4.
4х²-х²=256
3х²=256. |÷3
х²=256/3
х=√(256/3)
х=16/√3
х=16√3/3 ед
ответ: х=16√3/3 ед
К = ((Ах+Вх)/2; (Ау+Ву)/2) = (3; -2)
Л = ((Ах+Сх)/2; (Ау+Су)/2) = (2; 5)
М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
запишем систему 2-ух уравнений по х и по у:
{(Вх+Сх+ Ах+Сх+ Ах+Вх+)/2 = 3 + 2 +(-2) =3
{(Ву+Су + Ау+Су +Ау+Ву)/2 = (-2)+5+1 =4
{Вх+Сх+Ах = 3
{Ву+Су+Ау = 4
возвращаемся к координатам точки М и видим: М = ((Вх+Сх)/2; (Ву+Су)/2) = (-2; 1)
откуда находим
Вх+Сх = -2*2 = -4 и Ву+Су = 1*2 = 2
подставляем в нашу систему
{-4+Ах = 3
{2+Ау = 4
и находим Ах = 7; Ау = 2
А(7;2)