З точки М, що лежить поза колом, проведено до кола дві дотичні МА і МВ; де А і В-точки дотику, кут МАВ =60°.Знайдіть відстань від точки М до центра кола, якщо радіус кола дорівнює 10 см.
Извините что так много, но музыка для меня - это ! мелодия - душа музыки. это не просто размышление это есть факт. мелодия-душа музыки. мелодия всецело принадлежит музыке. мелодия-это мысль, это движение, это душа музыкального произведения! мелодия-это душа не только музыки но и человека! мелодия – единственная форма музыки; без мелодии музыка немыслима, а музыка и мелодия неразрывны. мелодия может заставить задуматься, улыбаться,грустить,она как и душа человека дает понять то что она несет,каждая нотка пропитывает нас,лостигает наших чувств. в каждой из песен — своя мелодия: веселая, задорная, нежная или грустная. мелодию можно спеть голосом со словами или напеть без слов, можно сыграть на каком-нибудь инструменте или сразу на нескольких. она может звучать с сопровождением других инструментов, других мелодий, аккордов аккомпанемента. разные мелодии самые различные настроения, чувства человека. не случайно говорят: «мелодия — душа музыки»
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.
Объяснение:
Смотри прикреплённый рисунок.
Пусть а = 8 см - ребро тетраэдра
a) В основании АВС проведём высоту АЕ ⊥ ВС. АЕ = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Угол между прямой SA и плоскостью АВС есть угол SAO
b) В основании АВС проведём высоту BK ⊥ AС. BK = 0,5а√3;
Опустим высоту SO на плоскость АВС.
Проведём в грани SAC апофему SK = 0,5а√3
Угол между плоскостями SAC и АВС есть угол SKO между апофемой SK и высотой основания ВК как угол между двумя перпендикулярами, восставленными из точки К к линии пересечения АС плоскостей SAC и АВС
Поскольку тетраэдр правильный, то углы между любой боковой плоскостью и плоскостью основания равны между собой. И косинус между плоскостью SBC и плоскостью АВС равен 1/3.