Із точки s, яка лежить поза площиною a, проведено перпендикуляр so, що дорівнює 15 см, і похилу sa. знайти довжину проекції цієї похилої, якщо різниця довжини похилої і проекції дорівнює 3 см. допомжіть зараз, будь !
На рисунке изображена прямоугольная трапеция ABCD, в которую вписан круг. Точка касания окружности делит большую боковую сторону на отрезки длиной 4 см и 25 см. Установите соответствие между началом предложения (1 - 4) и его окончанием (а-д) так, чтобы образовалось правильное утверждение
1 Средняя линия трапеции равна ,2 Высота трапеции равна , 3 радиус вписанной окружности равен , 4 Меньшая диагональ трапеции равна
A )√ 594 см , Б) 20 см, В)2√149 см , Г) 10 см , Д) 24,5 см
Вписанные углы опирающиеся на диаметр равны по 90°, поэтому ∠ADC=90°=∠CBA.
Треугольник ADC - равнобедренный (DA=DC) и прямоугольный (∠ADC=90°), поэтому углы при его основании равны по 45°. ∠DAC=45°=∠DCA
Треугольник ABC - прямоугольный (∠CBA=90°), так же 2AB=AC. Угол лежащий напротив катета, который вдвое меньше гипотенузы равен 30°, поэтому ∠BCA=30°. Сумма острых углов в прямоугольном треугольнике составляет 90°, поэтому ∠BАС=60°.
На рисунке изображена прямоугольная трапеция ABCD, в которую вписан круг. Точка касания окружности делит большую боковую сторону на отрезки длиной 4 см и 25 см. Установите соответствие между началом предложения (1 - 4) и его окончанием (а-д) так, чтобы образовалось правильное утверждение
1 Средняя линия трапеции равна ,2 Высота трапеции равна , 3 радиус вписанной окружности равен , 4 Меньшая диагональ трапеции равна
A )√ 594 см , Б) 20 см, В)2√149 см , Г) 10 см , Д) 24,5 см
Объяснение:
1) Найдем радиус вписанной окружности r=√(CH*HD)=√(4*25)10 (cм)⇒
диаметр ,равный высоте трапеции , равен 2*10=20( см), h=20 cм.
2)Высота прямоугольной трапеции равна меньшей боковой стороне ⇒ АВ=20 см.
3)Суммы противоположных сторон любого четырёхугольника описанного около окружности равны : АВ+CD=BC+AD ⇒BC+AD=20+29=49 (см)
По определению средней линии трапеции имеем = =24,5(см)
4) Меньшей диагональю будет АС.
По свойству отрезков касательных СН=СК=4 см, ВМ=ВК=10 см, тогда ВС=4+10=14 (см)
ΔАВС-прямоугольный по т. Пифагора АС=√(14²+20²)=√596=√(4*149)=2√149 ( см).
ответ . 1-Д ; 2-Б ; 3-Г ; 4-В .
Вписанные углы опирающиеся на диаметр равны по 90°, поэтому ∠ADC=90°=∠CBA.
Треугольник ADC - равнобедренный (DA=DC) и прямоугольный (∠ADC=90°), поэтому углы при его основании равны по 45°. ∠DAC=45°=∠DCA
Треугольник ABC - прямоугольный (∠CBA=90°), так же 2AB=AC. Угол лежащий напротив катета, который вдвое меньше гипотенузы равен 30°, поэтому ∠BCA=30°. Сумма острых углов в прямоугольном треугольнике составляет 90°, поэтому ∠BАС=60°.
∠BAD = ∠BAC+∠DAC = 60°+45° = 105°
∠BCD = ∠BCA+∠DCA = 30°+45° = 75°
ответ: ∠BAD=105°; ∠BСD=75°.