із точок D i E які лежать на одній площині відносно прямої m опущенно перпендикуляри DD1 i EE1 на цю пряму. Відомо що DD1 = 4 см EE1= 8 см D1E1 = 5 см. Якого найменшого значення може набувати сума DX+XE, де Х - точка, що належить прямый м?
Теорема косинусов: квадрат стороны треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними: AC²=AB²+BC²-2*AB*BC*cos∠B Известно, что АВ=ВС+4. Подставляем все известные значения в формулу: 14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120° 196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2) 196=2BC²+8BC+16+BC²+4BC 3BC²+12BC-196+16=0 3BC²+12BC-180=0 |:3 BC²+4BC-60=0 D=4²-4*(-60)=16+240=256=16² BC=(-4-16)/2=-10 - не подходит BC=(-4+16)/2=6 см АВ=6+4=10 см
Для удобства обозначим искомые углы: ∠АКМ=∠1 и ∠АLM=∠2 Т. к. ΔАВС - равносторонний и ВК=КL=LC, АМ=1/3АС, то ВК=КL=LC=АМ, что и обозначим на чертеже. Рассмотрим Δ СМК: он равносторонний, ML - его медиана, а также биссектриса и высота, значит ∠CML=∠KML=30° ∠AML=180°-∠CML=180°-30°=150°, как смежный. Итак, ∠AML=150° (жирным выделено, потому что это является одним из ключевых этапов решения). АВ параллельна КМ (доказательство опускаю, оно несложное), значит ∠ВАК=∠1, как накрест лежащие. ΔАВК=ΔACL по первому признаку равенства Δ-ков, значит ∠KAB=∠LAC=∠1 Рассмотрим ΔAML: ∠1+∠2+∠AML=180° ∠1+∠2=180°-∠AML ∠1+∠2=180°-150°=30°
ответ: ∠АКМ+∠АLM=30° Рисунок во вложении. ...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)
AC²=AB²+BC²-2*AB*BC*cos∠B
Известно, что АВ=ВС+4. Подставляем все известные значения в формулу:
14²=(ВС+4)²+ВС²-2(ВС+4)*ВС*cos120°
196=BC²+8BC+16+BC²-2(BC+4)*BC*(-1/2)
196=2BC²+8BC+16+BC²+4BC
3BC²+12BC-196+16=0
3BC²+12BC-180=0 |:3
BC²+4BC-60=0
D=4²-4*(-60)=16+240=256=16²
BC=(-4-16)/2=-10 - не подходит
BC=(-4+16)/2=6 см
АВ=6+4=10 см
ответ: АВ=10 см, ВС=6 см.
∠АКМ=∠1 и ∠АLM=∠2
Т. к. ΔАВС - равносторонний и ВК=КL=LC, АМ=1/3АС, то ВК=КL=LC=АМ, что и обозначим на чертеже.
Рассмотрим Δ СМК: он равносторонний, ML - его медиана, а также биссектриса и высота, значит ∠CML=∠KML=30°
∠AML=180°-∠CML=180°-30°=150°, как смежный.
Итак, ∠AML=150° (жирным выделено, потому что это является одним из ключевых этапов решения).
АВ параллельна КМ (доказательство опускаю, оно несложное), значит ∠ВАК=∠1, как накрест лежащие.
ΔАВК=ΔACL по первому признаку равенства Δ-ков, значит ∠KAB=∠LAC=∠1
Рассмотрим ΔAML:
∠1+∠2+∠AML=180°
∠1+∠2=180°-∠AML
∠1+∠2=180°-150°=30°
ответ: ∠АКМ+∠АLM=30°
Рисунок во вложении.
...Ну и как "Лучший ответ" не забудь отметить, ОК?!.. ;)