Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:
AC=88*.
Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:
В параллелограмме противоположные углы равны по определению.
Так как противоположные стороны параллелограмма параллельны, то сумма его внутренних односторонних углов, как углов при параллельных прямых и секущей, равна 180º.
∠ВАД+∠СВА=180º
Биссектрисы параллелограмма делят каждый его угол пополам.
Рассмотрим ∆ АВК.
∠ВАК=¹/₂ ∠ВАД
∠КВА=¹/₂∠СВА
¹/₂ ∠ВАД+¹/₂∠СВА =¹/₂ (∠ВАД+∠СВА)=180º:2=90º
Сумма углов треугольника равна 180º,⇒
∠ВКА=в180°-90°=90°
Вертикальный ему угол МКТ четырехугольника КМНТ равен ему и тоже прямой.
Аналогично доказывается, что угол МНТ равен 90º как вертикальный углу СНД,
В ∆ АМД сумма половин внутренних односторонних углов ВАД и СДА равна 90º. ⇒
Угол АМД равен 90º.
Аналогично угол ВТС =90º
Все углы четырехугольника КМНТ, образованного при пересечении биссектрис углов параллелограмма - прямые. ⇒
Если я правильно поняла, то вписанный и центральный угол лежат на одной и той же дуге. Значит, рассмотри для начала центральный: этот угол равен 88*, а по теореме градусная мера центрального угла равна гр. мере дуги, на которую он опирается. Отсюда дуга будет равна 88*:
AC=88*.
Найдём теперь вписанный угол. В теореме о вписанном угле сказано, что он равен половине дуги, на которую опирается. Опирается он на дугу AC, значит, чтобы найти угол ABC, нужно AC разделить на 2:
AC/2=88/2= вычислишь сам/а.
Сложного ничего нет.
В параллелограмме противоположные углы равны по определению.
Так как противоположные стороны параллелограмма параллельны, то сумма его внутренних односторонних углов, как углов при параллельных прямых и секущей, равна 180º.
∠ВАД+∠СВА=180º
Биссектрисы параллелограмма делят каждый его угол пополам.
Рассмотрим ∆ АВК.
∠ВАК=¹/₂ ∠ВАД
∠КВА=¹/₂∠СВА
¹/₂ ∠ВАД+¹/₂∠СВА =¹/₂ (∠ВАД+∠СВА)=180º:2=90º
Сумма углов треугольника равна 180º,⇒
∠ВКА=в180°-90°=90°
Вертикальный ему угол МКТ четырехугольника КМНТ равен ему и тоже прямой.
Аналогично доказывается, что угол МНТ равен 90º как вертикальный углу СНД,
В ∆ АМД сумма половин внутренних односторонних углов ВАД и СДА равна 90º. ⇒
Угол АМД равен 90º.
Аналогично угол ВТС =90º
Все углы четырехугольника КМНТ, образованного при пересечении биссектрис углов параллелограмма - прямые. ⇒
четырехугольник КМНТ - прямоугольник.