З вершини В прямокутника АВСD зі сторонами 5 см і 16 см проведено перпендикуляр ВМ довжиною 12 см до його площини. Знайдіть відстані від точки М до сторін
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
Рассмотрим ромб АА1С1С: стороны AA1 = A1C1 = C1C = AC = 4, диагональ АС1 = 6, а поскольку диагонали ромба пересекаются под прямым углом и делятся точкой пересечения пополам, имеем АО = ОС1 = 3. Из прямоугольного треугольника АОС: из теоремы Пифагора:OC^2 = OA^2 + OC^2, OC^2 = 4^2 - 3^2 = 16 - 9 = 7, OC = корень из 7. А1С = 2ОС = 2 корня из 7. Площадь ромба равна произведению диагоналей поделить на два, и также она равна произведению стороны и опущенной на нее высоты. Из первого случая S = AC1*A1C = (6 умножить на 2 корня из 7) поделить на два, S ромба = 6 корней из 7. Из второй формулы имеем: S = AC*A1K, 6 корней из 7 = А1К*4б А1К = 6 корней из 7 поделить на 4, А1К = 3 корня из 7 разделить на 2. Найдем площадь основания через формулу Герона: S = корень из p(p - AB)(p - BC)(p - AC), р - полупериметр треугольника, р = 4*3/2 = 12/2 = 6. S = корень из 6(6-4)(6-4)(6-4) = 6*2*2*2 = 6*8 = 48. S = корень из 48 = 4 корня из 3. Площадь основания равна 4 корня из 3. Объем призмы равен произведению площади основания на высоту^ V = So*H. Поскольку грань, которая является ромбом, перпендикулярна к основанию, то высота ромба равна высоте призмы: A1K = H = 3 корня из 7 поделить на 2. V = 4 корня из 3 умножить на 3 корня из 7 и разделить на 2. V = 6 корней из 21.
18.
∪ ALB = 72° => <AOB = 72° =>
x = 90-<AOB = 18°.
20.
Проведём медиану KN, которая делит сторону MP на 2 равные части (MK; KP).
Касательная к окружности перпендикулярна к радиусу(ON), проведенному в точку касания, тоесть <MNP = 90°.
Проведём ещё одну медиану OK. Так как треугольник MKN — равнобёдренный(потому что MK & KN проведены через крайние точки диаметра, и имеют третью общую точку), то медиана OK — также является биссектрисой, и высотой, что и означает <MOK = 90°, и что MO == OK == ON.
MO == OK => <OMK == <OKM = 90/2 = 45°
<OMK = x = 45°.
24.
Касательная к окружности перпендикулярна к радиусу(OA), проведенному в точку касания, тоесть <OAC = 90°.
<OAC = 90° => <OAB = <OAC - <BAC => <OAB = 90-40 = 50°
OB == OA => <OAB == <OBA = 50°
<BOA = 180-(50+50) = 80°.
А в 22-ом я пока путаюсь, решу немного позже(сложновато для меня), прости.
Площадь ромба равна произведению диагоналей поделить на два, и также она равна произведению стороны и опущенной на нее высоты. Из первого случая S = AC1*A1C = (6 умножить на 2 корня из 7) поделить на два, S ромба = 6 корней из 7. Из второй формулы имеем: S = AC*A1K, 6 корней из 7 = А1К*4б А1К = 6 корней из 7 поделить на 4, А1К = 3 корня из 7 разделить на 2.
Найдем площадь основания через формулу Герона: S = корень из p(p - AB)(p - BC)(p - AC), р - полупериметр треугольника, р = 4*3/2 = 12/2 = 6. S = корень из 6(6-4)(6-4)(6-4) = 6*2*2*2 = 6*8 = 48. S = корень из 48 = 4 корня из 3. Площадь основания равна 4 корня из 3.
Объем призмы равен произведению площади основания на высоту^ V = So*H. Поскольку грань, которая является ромбом, перпендикулярна к основанию, то высота ромба равна высоте призмы: A1K = H = 3 корня из 7 поделить на 2. V = 4 корня из 3 умножить на 3 корня из 7 и разделить на 2. V = 6 корней из 21.