Із вершини В рівностороннього трикутника АBC до його площини проведено перпендикуляр ВМ. знайдіть сторону трикутника, якщо відстань від точки М до сторони АС=4см, а до вершини С=5см
А) у прямоугольных треугольников AHB1 и AA1C есть общий угол A1AC; значит равны и вторые углы. (AA1 - третья высота) б) если построить на AH окружность, как на диаметре, то точки C1 и B1 попадут на неё из за того, что углы AC1H и AB1H прямые. Поэтому AH - диаметр окружности, описанной вокруг треугольника AB1C1; Отсюда по теореме синусов B1C1 = AH*sin(∠BAC) = 21/2; Однако :) стороны треугольника AB1C1 можно выразить через стороны треугольника ABC так AB1 = AB*cos(∠BAC); AC1 = AC*cos(∠BAC); поскольку ∠BAC общий, треугольники подобны с коэффициентом подобия cos(∠BAC); то есть BC*cos(∠BAC) = B1C1 = AH*sin(∠BAC); BC = AH*tg(∠BAC) = 21/√3 = 7√3;
2) Треугольники АОВ и АО₁В - равнобедренные, так как в каждом две стороны равны как радиусы одной и той же окружности. 1) Если провести к АВ высоту ОМ из О, то ОМ будет для равнобедренного треугольника АОВ и медианой и биссектрисой.. Высота из О₁ в равнобедренном треугольнике АО₁В, проведенная к тому же отрезку АВ, тоже - медиана и биссектриса. Так как М - середина одного и того же отрезка и углы при ней прямые, то М лежит на ОО₁ Отсюда Угол АОМ=углу ВОМ, угол АО₁М=углу ВО₁М. ОО₁- общая сторона этих треугольников. По второму признаку равенства треугольников треугольники равны, если у них равны два угла и сторона между ними. ⇒ Δ АО₁В=Δ АОВ ч.т.д.
б) если построить на AH окружность, как на диаметре, то точки C1 и B1 попадут на неё из за того, что углы AC1H и AB1H прямые. Поэтому AH - диаметр окружности, описанной вокруг треугольника AB1C1;
Отсюда по теореме синусов B1C1 = AH*sin(∠BAC) = 21/2;
Однако :) стороны треугольника AB1C1 можно выразить через стороны треугольника ABC так
AB1 = AB*cos(∠BAC); AC1 = AC*cos(∠BAC);
поскольку ∠BAC общий, треугольники подобны с коэффициентом подобия cos(∠BAC); то есть BC*cos(∠BAC) = B1C1 = AH*sin(∠BAC);
BC = AH*tg(∠BAC) = 21/√3 = 7√3;
1) Если провести к АВ высоту ОМ из О, то ОМ будет для равнобедренного треугольника АОВ и медианой и биссектрисой..
Высота из О₁ в равнобедренном треугольнике АО₁В, проведенная к тому же отрезку АВ, тоже - медиана и биссектриса. Так как М - середина одного и того же отрезка и углы при ней прямые, то М лежит на ОО₁
Отсюда
Угол АОМ=углу ВОМ,
угол АО₁М=углу ВО₁М.
ОО₁- общая сторона этих треугольников.
По второму признаку равенства треугольников треугольники равны, если у них равны два угла и сторона между ними. ⇒ Δ АО₁В=Δ АОВ ч.т.д.