За 1 четверть по предмету «Геометрия» 2 вариант 1. Даны прямая РМ, точка F не лежащая на прямой РМ, и точка к, лежащая на прямой РМ. Каково взаимное расположение прямой РМ и отрезка FK. [3] 2. При пересечении двух прямых образовались углы найдите градусную меру всех углов? Если один из них равен 58 [3] 3. Точка K – середина отрезка CD точка M— середина отрезка СК. Найдите CM, MK, KD если CD — 8 см. . [2] 4. Начертите неразвернутый угол АОВ шотметьте, 1) две точки КиР внутри этого угла 2) две точки M N вне этого угла 3) две точкин D E на сторонах, ITTER СОЧ БЕЗ ОБЪЕСНЕНИЙ
Такс. Сначала мы построили отрезок (единичный) а и угол, равный 90°. Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2. Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a. Затем построили прямой угол и вверх отмерили 7 отрезков а. Получился отрезок, равный 7а. Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3). Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а. Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Такс. Сначала мы построили отрезок (единичный) а и угол, равный 90°. Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2. Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a. Затем построили прямой угол и вверх отмерили 7 отрезков а. Получился отрезок, равный 7а. Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3). Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а. Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Сначала мы построили отрезок (единичный) а и угол, равный 90°.
Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2.
Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a.
Затем построили прямой угол и вверх отмерили 7 отрезков а.
Получился отрезок, равный 7а.
Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3).
Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а.
Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Т.е. sinA10B3A3 = 7/9.
Сначала мы построили отрезок (единичный) а и угол, равный 90°.
Затем применили теорему Пифагора, чтобы найти стороны данного прямоугольного треугольника.
Потом мы построили прямоугольный треугольник с катета ми а и а, чтобы найти и отметить длину гипотенузы, равной а√2.
Затем на другой прямой мы отмерили и построили отрезок, равный 4√2а.
Затем на третьей прямой мы отмпиилм отрезок, равный 4√2a.
Затем построили прямой угол и вверх отмерили 7 отрезков а.
Получился отрезок, равный 7а.
Затем соединили конец этого отрезка с концом отрезка, равного 4√2а (это отрезок A3B3).
Таким образом мы получили прямоугольный треугольник, у которого один катет равен 7а, а другой - 9а.
Синус угла, противолежащего этому катета, равному 7а, есть 7а/9а = 7/9.
Т.е. sinA10B3A3 = 7/9.