За да нело4 прямоугольном треугольнике ACB ( 2 C = 90°) AB = 18, 2 ВАС = 30°. с центром в точке в проведена окружность. Каким должен быть ее радиус, чтобы: а) окружность касалась отрезка АС; b) окружность не имела общих точек с отрезком АС; с) окружность имела две общие точки с отрезком АС? ап
Втетрайдере давс точка р середина ад, точка f принадлежит ребру дв, причем f принадлежит дв, дf: fв=1: 3. постройти сечение тетрайдера с плоскостью проходящую через рf и || ас. найдите s сечения, если все ребра равны а. проведем в плоскости adc прямую через точку p параллельную прямой ac, полученная прямая пересекает dc в точке м. тогда pmf - искомое сечение. найдем его площадь. 1) так как df: fb = 1: 3 и df + fb = db = a, то df = 1/4 * a. pd = 1/2 * ad = 1/2 * a. так как в треугольнике adb ad = db = ab = a, значит он равносторонний и pdf = 60. тогда по теореме косинусов: pf^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 pf^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 2) в треугольнике dac pm || ac и p - середина ad => pm - средняя линия, тогда pm = 1/2 * ac = 1/2 * a и dm = 1/2 * dc = 1/2 * a 3) dm = 1/2 * a, df = 1/4 * a так как в треугольнике cdb cd = db = cb = a, значит он равносторонний и fdm = 60. тогда по теореме косинусов: fm^2 = (1/2 * a)^2 + (1/4 * a)^2 - 2 * 1/2 * a * 1/4 * a * cos 60 fm^2 = 1/4 * a^2 + 1/16 * a^2 - 1/8 * a^2 = 3/16 * a^2 значит искомый треугольник pmf равнобедренный fm = pf = 3^(1/2)/4 * a, dm = 1/2 * a fh2 - высота треугольника mfp (она же медиана) отсюда mh2 = 1/2 * mp = 1/2 * 1/2 * a = 1/4 * a из прямоугольного треугольника fmh2: (fm)^2 = (fh2)^2 + (mh2)^2 (fh2)^2 = (fm)^2 - (mh2)^2 (fh2)^2 = (3^(1/2)/4 * a)^2 - (1/4 * a)^2 = = 3/16 * a^2 - 1/16 * a^2 = 1/8 * a^2 => fh2 = 2^(1/2)/4 * a s mfp = 1/2 * mp * fh2 s mfp = 1/2 * 1/2 * a * 2^(1/2)/4 * a = 2^(1/2)/16 * a^2 вот так наверное.
7 задание.
дано :
треугольник р/б.
Р=20см
АС=4см
найти :
сторону АВ
т.к ВС - высота (угол при прямой D)
и медиана АС=СD
1)4см+4см=8см основание
АВ=ВD, т.к треугольник р/б (равнобедренный)
2)20см-8см=12см сумма равных сторон
3) 12см:2=6см равные стороны
ответ : АВ = 6см
8 задание.
дано :
треугольник р/б
Р=32см
АВ-DC=4см
найти : ВС
тут можно решить уравнением
возьмем DC за х
(х+4)+(х+4)+2х=32
(объясняю:
х+4
чтоб найти DC надо к DC прибавить 4 в результате чего получается АВ
2х
это 2 × х, т.к мы взяли DC за х
х+4+2х это сумма половины основания и одной стороны, по этому дублируем, то есть получается
(х+4)+(х+4)+2х=32
32 это периметр)
решаем уравнение
1) (х+4)+(х+4)+2х=32
2х+8+2х=32
4х=24
х=24:4
х=6 это мы нашли DC
2) DC=AD, т.к DB биссектриса
6+6=12 основание
3) периметр - основание = сумма сторон
Ртреугольника-АС= АВ+ВС
32-12=20 сумма сторон АВ+ВС
4) АВ=ВС
20:2=10 AB и BC
ответ : ВС =10см