ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение:
Рассмотрим треугольник АВС- он прямоугольный, равнобедренный, следовательно угол САВ= углу АВС=45градусам (сумма углов треугольника равна 180 градусам)
Аналогично в треугольниках АМС, МСК, КСВ, следовательно углы МАС= САВ= АВС= СВК= ВКС= СКМ= 45 градусов, следовательно угол А= углу В= углу К= углу М= 90 градусов, следовательно МАВК- прямоугольник.
Рассмотрим тоеугольники АВС и ВКС. Они прямоугольные и равны по катету и острому углу (или по 2 катетам), следовательно АВ=ВК=5см,следовательно МАВК- квадрат.
Площадь квадрата = а в квадрате, следовательно площадь АВКМ равна 5*5=25см квадратных.
ответ:А (-1, -1, -1), В (-1, 3, -1), С (-1, -1, 2)
AB=\sqrt{\big(x_B-x_A\big)^2+\big(y_B-y_A\big)^2+\big(z_B-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-(-1)\big)^2}==\sqrt{0+4^2+0}=4
CB=\sqrt{\big(x_B-x_C\Big)^2+\big(y_B-y_C\big)^2+\big(z_B-z_C\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(3-(-1)\big)^2+\big(-1-2\big)^2}==\sqrt{0+16+9}=5
AC=\sqrt{\big(x_C-x_A\big)^2+\big(y_C-y_A\big)^2+\big(z_C-z_A\big)^2}==\sqrt{\big(-1-(-1)\big)^2+\big(-1-(-1)\big)^2+\big(2-(-1)\big)^2}==\sqrt{0+0+3^2}=3
P_{\Delta ABC}=AB+CB+AC=4+5+3=12boxed{\boldsymbol{P_{\Delta ABC}=12}}
Объяснение: