Так ка площадь треугольника равна половине произведения основания на высоту, то:
90 = (12 · H) : 2
Н = 180 : 12 = 15 см
2) В равнобедренном треугольнике высота, опущенная на основание, является его медианой, то есть делит основание пополам.
Это значит, что в прямоугольном треугольнике, образованном боковой стороной, высотой к основанию и половиной нижнего основания, боковая сторона АВ является гипотенузой, которую можно найти по теореме Пифагора:
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.
3√29 cм ≈ 16,16 см
Объяснение:
1) Находим высоту.
Так ка площадь треугольника равна половине произведения основания на высоту, то:
90 = (12 · H) : 2
Н = 180 : 12 = 15 см
2) В равнобедренном треугольнике высота, опущенная на основание, является его медианой, то есть делит основание пополам.
Это значит, что в прямоугольном треугольнике, образованном боковой стороной, высотой к основанию и половиной нижнего основания, боковая сторона АВ является гипотенузой, которую можно найти по теореме Пифагора:
АВ = √(6² + 15²) = √(36 + 225) = √261 = √(9 · 29) = 3√29 cм ≈ 3· 5,385 ≈ 16,16 см
ответ: боковая сторона равна 3√29 cм ≈ 16,16 см
Объяснение:<!--c-->
image
1. Так как дан правильный тетраедр, то независимо от данных граней искомое сечение будет являться равносторонним треугольником MNK. При построении этого сечения необходимо провести параллельные отрезки каждой стороне грани ADB, которая по определению правильного тетраэдра — равносторонний треугольник. Таким образом искомое сечение тоже является равносторонним треугольником, подобным треугольнику ADB.
2. Рассмотрим рисунок грани DCB, через центр O которой мы проводим сторону сечения NK.
image
3. Центр равностороннего треугольника находится в точке пересечения высот, биссектрис и медиан и делит медиану (которая также является высотой и биссектрисой) в отношении 2:1, другими словами отношение большой части медианы к всей медиане 2:3.
4. Значит, отношение стороны сечения к ребру тетраэдра также 2:3.
5. Если обозначить ребро тетраэдра через a и сторону сечения через b, то ba=23 и b=2a3.
6. Площадь равностороннего треугольника определяется по формулеSMNK=b2⋅3√4=4⋅a2⋅3√9⋅4=a2⋅3√9=32⋅3√9
7. В результате рассчётов, площадь сечения — SMNK=1⋅3√ см2.