РАСЧЕТ ТРЕУГОЛЬНИКА, заданного координатами вершин: Вершина 1: A(-4; 1) Вершина 2: B(2; 4) Вершина 3: C(6; -4) ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА определяем по формуле Длина BС (a) = 8.94427190999916 Длина AС (b) = 11.1803398874989 Длина AB (c) = 6.70820393249937 ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 26.8328157299975 ПЛОЩАДЬ ТРЕУГОЛЬНИКА определяем по формуле S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)|. Площадь = 30 УГЛЫ ТРЕУГОЛЬНИКА по теореме косинусов cos A= (АВ²+АС²-ВС²) / (2*АВ*АС) Угол BAC при 1 вершине A: в радианах = 0.927295218001612 в градусах = 53.130102354156 Угол ABC при 2 вершине B: в радианах = 1.5707963267949 в градусах = 90 Угол BCA при 3 вершине C: в радианах = 0.643501108793284 в градусах = 36.869897645844 ЦЕНТР ТЯЖЕСТИ Координаты Om(1.33333333333333; 0.333333333333333) ВПИСАННАЯ ОКРУЖНОСТЬ Центр Ci(1; 1) Радиус = 2.23606797749979 ОПИСАННАЯ ОКРУЖНОСТЬ Центр Co(1; -1.5) Радиус определяем по формуле R = (AB*AC*BC) / 4*S Радиус = 5.59016994374947
Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
ДЛИНЫ СТОРОН ТРЕУГОЛЬНИКА определяем по формуле
Длина BС (a) = 8.94427190999916
Длина AС (b) = 11.1803398874989
Длина AB (c) = 6.70820393249937
ПЕРИМЕТР ТРЕУГОЛЬНИКА Периметр = 26.8328157299975
ПЛОЩАДЬ ТРЕУГОЛЬНИКА определяем по формуле
S=(1/2)*|(Хв-Ха)*(Ус-Уа)-(Хс-Ха)*(Ув-Уа)|.
Площадь = 30
УГЛЫ ТРЕУГОЛЬНИКА по теореме косинусов
cos A= (АВ²+АС²-ВС²) / (2*АВ*АС)
Угол BAC при 1 вершине A: в радианах = 0.927295218001612 в градусах = 53.130102354156
Угол ABC при 2 вершине B: в радианах = 1.5707963267949 в градусах = 90
Угол BCA при 3 вершине C: в радианах = 0.643501108793284 в градусах = 36.869897645844
ЦЕНТР ТЯЖЕСТИ Координаты Om(1.33333333333333; 0.333333333333333)
ВПИСАННАЯ ОКРУЖНОСТЬ Центр Ci(1; 1) Радиус = 2.23606797749979
ОПИСАННАЯ ОКРУЖНОСТЬ Центр Co(1; -1.5)
Радиус определяем по формуле
R = (AB*AC*BC) / 4*S
Радиус = 5.59016994374947
15 см и 20 см
Объяснение:
Теорема. Перпендикуляр, опущенный из вершины прямого угла на гипотенузу, есть средняя пропорциональная величина между отрезками, на которые основание перпендикуляра делит гиптенузу, а каждый катет есть средняя пропорциональная величина между гипотенузой и прилежащим к этому катету отрезком гипотенузы.
Пусть a и b - катеты, с - гипотенуза, х - длина перпендикуляра.
Тогда:
1) 9 : х = х : 16
х² = 144
х = 12 см
2) Первый катет (по теореме Пифагора):
а = √(9²+12²) = √(81+144) = √225 = 15 см
3) Второй катет:
b = √(16²+12²) = √(256+144) = √400 = 20 см
ПРОВЕРКА:
(9+16)² = 25² = 625
15² + 20² = 225 + 400 = 625
Квадрат гипотенузы равен сумме квадратов катетов
ответ: 15 см и 20 см