ΔВАО-равнобедренный, т.к. ОВ=ОА , поэтому углы при основании равны ∠В=∠ВАО=45°, тогда центральный угол ∠ВОА=180°-2*45°=90°⇒ дуга ∪АВ=90°.
"Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами"⇒∠х=90°:2=45°
2) "Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами"⇒ ∠Р=(∪АВ-∪АС):2
25°=(80°-х):2
50°=80°-х
х=30°
3)∠МАС=75°, ∠РВС=60° . По правилу об угле, образованном касательной и хордой, проходящей через точку касания ⇒∪АС=150° и ∪ВС=120°. Значит на ∪АВ остается ∪АВ=360°-150°-120°=90°.
∠С-вписанный и опирается на ∪АВ⇒∠С=45°.
ДАЛЬШЕ МОЖНО ТАК.......По т. о смежных углах ∠РАС=180°-75°=105° и ∠РВС=180°-60°=120°
ИЛИ МОЖНО ТАК..........Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами⇒ х= ((120°+150°)-90° ):2=90°
Для начала берешь данный отрезок и находишь его середину с простейших построений. (чертишь 2 окружности радиуса больше половины длинны отрезка. Центрами этих окружностей будут концы отрезка. В итоге эти окружности пересекутся в 2 точках. Через эти 2 точки провожишь прямую. Данная прямая будет серединным перпендикуляром. А серединный перпендикуляр обладает следующим свойством: делит отрезок пополам) Теперь рисуешь данный угол. Берешь циркуль и им отмеряешь половину отрезка (расстояние от конца отрезка до точки пересечения серединного перпендикуляра с отрезком). Затем с циркуля откладываешь эти расстояния на стороны угла (циркуль ставишь в вершину угла и затем строишь окружность с радиусом, равным половине отрезка.) Затем отмечаещь точки пересечения окружности и сторон угла. Это и есть искомые точки
Объяснение:
ОА⊥DА по свойству касательной , ∠DАО=90°.
∠х+∠ВАО=90° и ∠х=∠ВАО=45°
ΔВАО-равнобедренный, т.к. ОВ=ОА , поэтому углы при основании равны ∠В=∠ВАО=45°, тогда центральный угол ∠ВОА=180°-2*45°=90°⇒ дуга ∪АВ=90°.
"Величина угла, образованного касательной и хордой, проходящей через точку касания, равна половине величины дуги, заключённой между его сторонами"⇒∠х=90°:2=45°
2) "Величина угла, образованного секущими, пересекающимися вне круга, равна половине разности величин дуг, заключённых между его сторонами"⇒ ∠Р=(∪АВ-∪АС):2
25°=(80°-х):2
50°=80°-х
х=30°
3)∠МАС=75°, ∠РВС=60° . По правилу об угле, образованном касательной и хордой, проходящей через точку касания ⇒∪АС=150° и ∪ВС=120°. Значит на ∪АВ остается ∪АВ=360°-150°-120°=90°.
∠С-вписанный и опирается на ∪АВ⇒∠С=45°.
ДАЛЬШЕ МОЖНО ТАК.......По т. о смежных углах ∠РАС=180°-75°=105° и ∠РВС=180°-60°=120°
Сумма углов четырехугольника 360° , х=360°-105°-45°-120°=90°
ИЛИ МОЖНО ТАК..........Величина угла, образованного двумя касательными к окружности, равна половине разности величин дуг, заключённых между его сторонами⇒ х= ((120°+150°)-90° ):2=90°
Теперь рисуешь данный угол. Берешь циркуль и им отмеряешь половину отрезка (расстояние от конца отрезка до точки пересечения серединного перпендикуляра с отрезком). Затем с циркуля откладываешь эти расстояния на стороны угла (циркуль ставишь в вершину угла и затем строишь окружность с радиусом, равным половине отрезка.) Затем отмечаещь точки пересечения окружности и сторон угла. Это и есть искомые точки