Задача 1 Дано: ∆ВСА, LC=900 АВ = 3 см, sin β = 0,25 Найти: АС – ?
Задача 2. АВС -прямоугольный треугольник 1) ВС = 8, АВ = 17, АС = 15; 2) ВС=21, АС= 20, АВ = 29; 3) АС = 24, АВ = 25, СВ = 7 Задача 3. Найдите синус, косинус, тангенс и котангенс углов А и В. Катеты в прямоугольном треугольнике равны 12 см и 5 см, гипотенуза 13. Найдите значения синуса, косинуса, тангенса и котангенса меньшего угла
Нужно делить на СООТВЕТСТВУЮЩУЮ сторону треугольника. Если дано, что треугольники АВС и ОРТ, подобны, то вначале надо определить какие стороны являются соответствующими (и то же самое с углами: соответствующие углы у подобных треугольников равны). Как правило в учебниках, при записи подобных треугольников соответствие определяется по положению буквы в записи треугольника. Хотя, в новых учебниках это явно не сказано. Например, если сказано, что треугольники АВС и ОРТ подобны, то подразумевается, что угол А равен углу О, угол В равен Р, и С равен Т. И тогда стороне АВ соответствует сторона ОР, стороне ВС соответствует РТ и стороне АС соответствует OТ. Т.е. при такой записи, будет AB/OP=BC/PT=AC/OT. И в вашей задаче, если AB=8, то чтобы определить коэффициент подобия, надо знать длину именно ОР. И если сказано, что она 4, то да, треугольник ABC подобен треугольнику ОРТ с коэффициентом подобия 2.
Линия пересечения сферы плоскостью равна длине окружности, образовавшейся на шаре в результате пересечения. На рисунке АО = МО = ВО = D/2 = 10/2 = 5 см - радиусы шара. Из равнобедренного треугольника ВОМ: углы при основании равны: угол ОВМ = углу ОМВ = 45 градусов. Следовательно, угол ВОМ = 90 градусов. По теореме Пифагора из прямоугольного треугольника ВОМ: ОМ^2 = BM^2 + OM^2, OM^2 = 25 + 25 = 50, OM = корень из 50 = пять корней из двух. Итак, длина окружности равна: 2pi*R = D*pi = пять корней из. Искомая линия пересечения пять корней из двух умножить на pi сантиметров.