Задача №1 Даны три последовательные вершины параллелограмма А(1;2), В(-1;3), С(-4;2). Не находя координаты вершины D, найти:
- уравнение стороны AD;
- уравнение высоты ВК, опущенной из вершины В на сторону AD;
- длину высоты ВК;
- уравнение диагонали BD;
- тангенс угла между диагоналями параллелограмма;
- косинус угла В параллелограмма.
Записать общие уравнения найденных прямых.
Объяснение:
Угол между прямой и плоскостью — это угол между прямой и ее проекцией на данную плоскость.
1) прямая DC1 и плоскость A1B1C1
DD1 ⊥ (A1B1C1) ⇒ DD1 ⊥ D1C1 ⇒ D1C1 - проекция прямой DC1 на плоскость A1B1C1, а ∠DС1D1 - искомый угол.
Рассмотрим ΔDС1D1 (∠D1=90°):
D1C=A1B1=AB=5
DD1=AA1=12
tg ∠DС1D1 = D1D1/C1D1 = 12/5
∠DС1D1 = arctg (12/5)
2) прямая B1D и плоскость ABC
BB1 ⊥ (ABC) ⇒ BB1 ⊥ BD ⇒ BD - проекция прямой B1D на плоскость ABC, а ∠B1DB- искомый угол.
Рассмотрим ΔB1DB (∠B=90°):
BB1=AA1=12
BD найдём из прямоугольного ΔABD(∠A=90°) по т.Пифагора:
BD² =AB²+AD²=25+49=74
tg ∠B1DB=BB1/BD= = =
∠B1DB= arctg
Из ∆АВС: ∠В=30, ∠А=60°
Из ∆АВД: ∠АВД=15°, ∠АДВ=105°
Из ∆СВД: ∠СВД=15°, ∠ВДС=75°
Объяснение:
Сумма смежных углов составляет 180°, а ∠ВАЕ смежный с ∠ВАС, значит
∠ВАС=180–∠ВАЕ=180–120=60°
Рассмотрим ∆АВС, он прямоугольный, с прямым ∠С=90°. Сумма острых углов прямоугольного треугольника равна 90°, тогда
∠АВС=90–∠ВАС=90–60=30°
Из условия известно что ВД - биссектриса и делит ∠В пополам, поэтому
∠АВД=∠СВД=30÷2=15°
Рассмотрим ∆АВД, в нём ∠ВАД=60°, ∠АВД=15°. Сумма углов треугольника составляет 180°, значит
∠АДВ=180–∠ВАД–∠АВД=180–60–15=105°
∠ВДС смежный с ∠АДВ, тогда
∠ВДС=180–105=75°