Задача 1. Найти углы прямоугольного треугольника, если угол между биссектрисой и высотой, проведенными из вершины прямого угла, равен 18°.
Задача 2. Один из углов прямоугольного треугольника равен 60°, а сумма гипотенузы и меньшего катета равна 18 см. Найдите гипотенузу и меньший катет.
С=90°, А=60°, АВ+АС=18см
Найти: АВ, АС-?
Задача 3 (по готовому чертежу)
В прямоугольном ΔАВС, С=90°, А=30° проведена медиана СМ и биссектриса МД ΔСМА. Найдите МД, если ВС= 23см.
Рассмотрим треуг. АСК -прямоугольный,т.как АК-медиана и высота
АК делит сторону ВС пополам.
ВС=ВК+КС
ВК=КС=3:2=1,5 - катет
АС=3 - гипотенуза
Находим катет АК (теор.Пифагора):
АК2=АС2 - КС2
АК2=3*3 - 1,5*1,5
АК=корень из 6,75
АК=2,598
Точка О - центр пересечения медиан и делит медианы в отношении 2:1,начиная от вершины: АО:ОК=2:1
АО+ОК=3(части) - составляют 2,598
АО=2части, АО=2,598:3*2=1,732
Рассмотрим треуг.АОМ
ОМ-перпендикуляр,значит треуг.АОМ-прямоугольный
АО и ОМ - катеты, АМ - гипотенуза и расстояние от точки М до вершины А треуг.АВС
Находим АМ(теор.Пифагора):
АМ2=АО2+ОМ2
Ом=1;АО=1,732;
АМ2=1*1+1,732*1,732
АМ=корень из 4
АМ=2
Точка О - центр пересечения медиан и ,значит, О-центр описанной около треуг.АВС окружности.АО=ОС=ОВ - радиусы.Значит, точка М равноудалена от вершин треугольника АВС.Поэтому
1) Так как угол В=140, то и противолежащий угол D=140. Значит углы А и С равны по 180-140=40.
2) Так как образовавшийся треугольник АВН - прямоугольный, то сумма его острых углов А и АВН равна 90. Угол АВН равен 90-40=50.
3) Аналогично в треугольнике ВСН1 угол СВН1 равен 90-40=50.
4) Так как угол В - это сумма углов АВН+НВН1+СВН, из которорых один - искомый, а два других известны, то уголо НВН1 будет равен 140-50-50=40
ответ: 40 градусов.