опустим высоту и рассмотрим прямоугольный треугольник, образованный высотой, боковой стороной и частью большего основания трапеции. по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х² х²=13²-12² х²=169-144 х²=25 х=5 т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см) Площадь трапеции равна: средняя линия*высоту. Средняя линия равна: (7+17)/2=12(см) Отсюда площадь равна: 12*12=144 (см²)
по теореме Пифагора находим меленький отрезок на большем основании трапеции 13 ²=12²+х²
х²=13²-12²
х²=169-144
х²=25
х=5
т.к. это трапеция равнобедренная, с двух сторон будут одинаковые отрезки отрезки, значит, большее основание будет равно: 5+5+7=17 (см)
Площадь трапеции равна: средняя линия*высоту.
Средняя линия равна: (7+17)/2=12(см)
Отсюда площадь равна: 12*12=144 (см²)
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.