1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
1. 5 ед.
2. а√3 ед
Объяснение:
1. Расстояние между двумя параллельными плоскостями - перпендикуляр (кратчайшее расстояние). Следовательно: если точка находится на расстоянии 3 ед от одной из них, то расстояние до второй - (8-3)=5 ед.
2. Треугольники, образованные наклонными, их проекциями и вертикалью а - равнобедренные (углы при основании по 45°) ⇒ длина проекции - а;
треугольник образованный двумя проекциями с длиной а и отрезком, соединяющий их концы, равнобедренный. Угол при вершине 120° (по условию). Тогда углы при основании -
(180-120):2=30°;
высота, проведенная из вершины получившегося треугольника равна а/2 (сторона лежащая против угла 30°);
расстояние между концами наклонных равно удвоенной длине катета образованного высотой (а/2), гипотенузой (а) и половиной основания - √(а²-(а/2)²)=√(3а²/4)=а√3/2;
расстояние между концами наклонных 2*а√3/2=а√3 ед.
а) Проекция точки S на плоскость основания это точка O — центр основания. Центр правильного треугольника является точкой пересечения его медиан, поэтому . Прямая проецируется на плоскость основания и прямую Поэтому проекция точки — точка — лежит на отрезке M — середина AS, поэтому ее проекция — это середина отрезка AO. Таким образом, проекции точек S и M на плоскость основания делят высоту AN треугольника ABC на три равные части.
б) Прямая проектируется на плоскость основания в прямую Поэтому проекция точки — точка — лежит на отрезке Значит, прямая является проекцией прямой следовательно, угол — искомый. Заметим, что где — центр основания, значит, — средняя линия треугольника а поэтому — середина
Тогда
и
Из прямоугольного треугольника находим:
Из прямоугольного треугольника находим:
Значит, искомый угол равен
ответ:arctg 10/21