Задача 2. Угол АCВ с величиной 50° вписана окружность, которая касается сторон угла в точках A и B, точка O — центр окружности. Найдите угол AOB. ответ дайте в градусах.
Высота равнобедренного треугольника, проведенная к основанию, делит равнобедренный треугольник на два прямоугольных треугольника. И является биссектрисой угла при вершине. Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°). Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180° х+ х+2·(х-15°)=180° 4х=210° х=52,5° х-15°=52,5-15=37,5° Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой. ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
Центральный ∠АОС опирающийся на дугу АВС, равен двум углам СДА и равен 100°
По условию ∠ САД равен 79°
Центральный∠ СОД равен 79° ·2=158°
Так как окружность содержит 360°, центральный
∠ АОД равен 360°-100° -158°=102°
∠ АВД опирается на ту же дугу, что и ∠ АОД, поэтому равен его половине:
∠АВД=102°:2=51°
2)биссектрисы e и d делят внутренние накрест лежащие углы (которые равны) на 4 равных угла, 2 из которых являются также внутренними накрест лежащими для прямых e и d и секущей с. из равенства этих углов следует, что прямые e и d параллельны.
Пусть угол при основании х, тогда угол между высотой и боковой стороной равнобедренного треугольника равен (х-15°).
Угол при вершине в два раза больше 2(х-15°)
Сумма углов треугольника равна 180°
х+ х+2·(х-15°)=180°
4х=210°
х=52,5°
х-15°=52,5-15=37,5°
Угол при вершине равнобедренного треугольника в 2 раза больше, так как высота равнобедренного треугольника является также и биссектрисой.
ответ. углы при основании 52,5°; 52,5° и угол при вершине 75°
1)
∠ СДА равен 180°-130°=50°
Центральный ∠АОС опирающийся на дугу АВС, равен двум углам СДА и равен 100°
По условию ∠ САД равен 79°
Центральный∠ СОД равен 79° ·2=158°
Так как окружность содержит 360°, центральный
∠ АОД равен 360°-100° -158°=102°
∠ АВД опирается на ту же дугу, что и ∠ АОД, поэтому равен его половине:
∠АВД=102°:2=51°
2)биссектрисы e и d делят внутренние накрест лежащие углы (которые равны) на 4 равных угла, 2 из которых являются также внутренними накрест лежащими для прямых e и d и секущей с. из равенства этих углов следует, что прямые e и d параллельны.