В выпуклом четырехугольнике ABCD известно, что ∠BCD = ∠CDA ⩾ 90◦. Биссектрисы углов A и B пересекаются в точке M на стороне CD. Докажите, что M — середина CD.
Дано: АВСD - выпуклый четырехугольник;
∠BCD = ∠CDA ⩾ 90◦;
ВМ и АМ - биссектрисы ∠В и ∠А соответственно;
М ∈ CD;
Доказать: М - середина CD.
Доказательство:
Продолжим стороны ВС и АD до пересечения. Поставим точку К.
Соединим К и М.
1. Рассмотрим ΔАВК.
ВМ и АМ - биссектрисы ∠В и ∠А соответственно. (условие)
Биссектрисы внутренних углов треугольника пересекаются в одной точке.
⇒ КМ - биссектриса ∠К.
2. Рассмотрим ΔDCK.
Сумма смежных углов равна 180°.
⇒ ∠DCK = 180° - ∠BCD
∠CDK = 180° - ∠CDA
∠BCD = ∠CDA (условие)
⇒ ∠DCK = ∠CDK
Если в треугольнике два равных угла, то этот треугольник равнобедренный.
⇒ ΔDCK - равнобедренный.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой.
Фигура указанная на рисунке состоит из двух частей - прямоугольник и половина эллипса¹.
Найдём площадь прямоугольника:
1) 106 • 2 = 212.
Найдём b эллипса:
2) 11 - 2 = 9.
Найдём a эллипса:
3) 106 : 2 = 53.
Найдём площадь эллипса:
4) 9 • 53 • π² = почти 1 498,54 (точнее 1 498,539695762331374746680)
Найдём его половину:
5) 1 498,54 : 2 = почти 749,27 (точнее 749,2698478811656873733404)
Найдём площадь всей фигуры:
6) 749,27 + 212 = почти 961,27 (точнее 961,2698478811656873733404)
ответ: почти 961,27 или 961,2698478811656873733404.
эллипс¹ - сплющенный круг, синонимом которого является "овал".
π² - число Пи, равное 3,14.
Доказали, что точка М - середина CD.
Объяснение:
В выпуклом четырехугольнике ABCD известно, что ∠BCD = ∠CDA ⩾ 90◦. Биссектрисы углов A и B пересекаются в точке M на стороне CD. Докажите, что M — середина CD.
Дано: АВСD - выпуклый четырехугольник;
∠BCD = ∠CDA ⩾ 90◦;
ВМ и АМ - биссектрисы ∠В и ∠А соответственно;
М ∈ CD;
Доказать: М - середина CD.
Доказательство:
Продолжим стороны ВС и АD до пересечения. Поставим точку К.
Соединим К и М.
1. Рассмотрим ΔАВК.
ВМ и АМ - биссектрисы ∠В и ∠А соответственно. (условие)
Биссектрисы внутренних углов треугольника пересекаются в одной точке.⇒ КМ - биссектриса ∠К.
2. Рассмотрим ΔDCK.
Сумма смежных углов равна 180°.⇒ ∠DCK = 180° - ∠BCD
∠CDK = 180° - ∠CDA
∠BCD = ∠CDA (условие)
⇒ ∠DCK = ∠CDK
Если в треугольнике два равных угла, то этот треугольник равнобедренный.⇒ ΔDCK - равнобедренный.
В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой.⇒ СМ = MD.
Доказали, что точка М - середина CD.