Подобные треугольники —треугольники , у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Стороны, которые противолежат равным парам углов обоих треугольников, называются сходственными. Так, на рисунке стороны AB и A1B1, AC и A1C1, BC и B1C1, сходственные, поскольку лежат напротив соответственно равных углов треугольников ABC и A1B1C1.
Отношение сходственных сторон подобных треугольников называется коэффициентом подобия.
Углы A = A1, B = B1, C = C1 и AB/A1B1 = ВC/В1C1 = АС/А1С1 = k, где k – коэффициент подобия. И на рисунке видно, что у подобных треугольников одинаковые пропорции, и отличаются они лишь масштабом.
{Рисунок во вложении.}
Подобные треугольники —треугольники , у которых углы соответственно равны, а стороны одного пропорциональны сходственным сторонам другого треугольника.
Стороны, которые противолежат равным парам углов обоих треугольников, называются сходственными. Так, на рисунке стороны AB и A1B1, AC и A1C1, BC и B1C1, сходственные, поскольку лежат напротив соответственно равных углов треугольников ABC и A1B1C1.
Отношение сходственных сторон подобных треугольников называется коэффициентом подобия.
Углы A = A1, B = B1, C = C1 и AB/A1B1 = ВC/В1C1 = АС/А1С1 = k, где k – коэффициент подобия. И на рисунке видно, что у подобных треугольников одинаковые пропорции, и отличаются они лишь масштабом.
а - сторона ромба
периметр
Р = 4а = 52
а = 52/4 = 13 см
Диагонали ромбы d1 и d2 перпендикулярны =>
d1 / d2 = 5 / 12 или d1 = 5d2 / 12
Cтороны прямоугольных треугольников, образуемых диагоналями,будут ^
d1/2, d2/2 -катеты
а - -гипотенуза (она же сторона ромба)
По теореме пифагора
(d1/2)^2 + (d2/2)^2 = a^2
d1^2 + d2^2 = 4a^2
(5d2 /12)^2 + d2^2 = 13^2
25d2^2 + 144d2^2 = 13^2 * 12^2
169d2^2 = (13^2*12^2
13^2 d2^2 = 13^2 * 12^2
d2^2 = 12^2
d2 = 12 см - вторая диагональ
d1 = 5d2 / 12 = 5 * 12 / 12 = 5 - первая диагональ
ответ: диагонали d1=5 cм, d2 = 12 см