Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:
<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)
Дано:
а=4, b=5, c=6.
Найти: a, b, y -?
Пусть b - наибольшая сторона, b<a+c.
По теореме косинусов находим наибольший угол b,
[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]
При основного тригонометрического тождества найдём Sin B
Угол между двумя пересекающимися плоскостями равен углу между прямыми, по которым они пересекаются с любой плоскостью, перпендикулярной их линии пересечения. В нашем случае искомый угол - это угол между высотой СН треугольника (плоскости) АВС и высотой DH треугольника (плоскости) DAB. Поместим начало координат в точку D(0;0;0). Тогда имеем точки: А(0;а;0), В(0;0;а), С(а;0;0). Найдем координаты точки Н, как середины отрезка АВ: Н(0;а/2;а/2). Тогда вектор DH{0;а/2;а/2}, его модуль |DH|=√(2a²/4)=a√2/2, вектор СН{-a;a/2;a/2}, его модуль |HC|=√(6a²/4)=a√6/2. Cosα=(x1*x2+y1*y2+z1*z2)/(|DH|*|HC|) или Cosα=(0+а²/4+а²/4)/(а²√12/4)=(2а²*4)/(4*а²√12)=2/√12=√3/3. ответ: Искомый угол равен α=arccos√3/3 или α≈54,74°.
Будем использовать следующие значения для сторон треугольника АВС: АВ=с, ВС=а, СА=b и его углов:
<А=а, <В=b, <C=y (a, b, y : Альфа, Бэта, Гама.)
Дано:
а=4, b=5, c=6.
Найти: a, b, y -?
Пусть b - наибольшая сторона, b<a+c.
По теореме косинусов находим наибольший угол b,
[Не обязательно писать, для ориентира: Квадрат стороны треугольника равняется сумме квадратов 2-х других сторон минус удвоенное произведение этих сторон на косинус угла между ними.]
При основного тригонометрического тождества найдём Sin B
С теоремы синусов найдём углы треугольника:
Отсюда,
С таблиц находим градусную меру углов:
а≈41°
b≈57°
Тогда,
у≈82°
ответ: 41° 57° 82°
В нашем случае искомый угол - это угол между высотой СН треугольника (плоскости) АВС и высотой DH треугольника (плоскости) DAB.
Поместим начало координат в точку D(0;0;0). Тогда имеем точки:
А(0;а;0), В(0;0;а), С(а;0;0).
Найдем координаты точки Н, как середины отрезка АВ:
Н(0;а/2;а/2).
Тогда вектор DH{0;а/2;а/2}, его модуль |DH|=√(2a²/4)=a√2/2,
вектор СН{-a;a/2;a/2}, его модуль |HC|=√(6a²/4)=a√6/2.
Cosα=(x1*x2+y1*y2+z1*z2)/(|DH|*|HC|) или
Cosα=(0+а²/4+а²/4)/(а²√12/4)=(2а²*4)/(4*а²√12)=2/√12=√3/3.
ответ: Искомый угол равен α=arccos√3/3 или α≈54,74°.