Построение отрезка, равного данному. дан - отрезок ab. требуется - построить равный ему отрезок (такой же длины). для этого - построим произвольный луч с началом в новой точке c. циркулем замерим данный отрезок ab. теперь тем же самым раствором циркуля на построенном луче от его начала - c - отложим отрезок, равный данному. для этого иглой циркуля упираем в начало луча c, а пишущей ножкой проводим дугу до пересечения с лучом. точку пересечения назовём d. отрезок cd равен отрезку ab. построение закончено. источник:
Дано: δ авс ∠с=90° ак - биссектриса ак=18 см км=9 см найти: ∠акв решение. т.к. расстояние от точки измеряется по перпендикуляру, то опустим его из (·) к на гипотенузу ав и обозначим это расстояние км рассмотрим полученный δакм, т.к. ∠амк=90°, то ак - гипотенуза, а км - катет поскольку, исходя из условия, катет км=9/18=1/2 ак, то ∠кам=30° т.к. по условию ак - биссектриса, то ∠сак=∠кам=30° рассмотрим δакс по условию ∠аск=90°; а ∠сак=30°, значит, ∠акс=180°-90°-30°=60° искомый ∠акв - смежный с ∠акс, значит ∠акв=180° - ∠акс=180°-60°=120° ответ: 120°