1.два кути називаються суміжними, якщо в них одна сторона спільна а дві інші є доповняльними променями 2сума суміжних кутив дорівнюе 180 градусів 3 два кути називаються вертикальними якщо сторони одного кута є доповняльними променями сторин другого якщо вертикальні кути є розгорнутими то вони рівно 4 перпендикулярними 5 дві прямі називаються паралельними якщо вони не перетинаються 6 дві перпендикулярними якщо при їхньому перетині утворивня прямий кут 7 що не перетинаються 8відрізок 9кут який мае вершіну кута та три сторони
ответ. Если у пары внутренних накрест лежащих углов один угол заменить вертикальным ему, то получится пара углов, которые называются соответственными углами данных прямых с секущей. Что и требовалось объяснить. Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение. Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.
2сума суміжних кутив дорівнюе 180 градусів
3 два кути називаються вертикальними якщо сторони одного кута є доповняльними променями сторин другого
якщо вертикальні кути є розгорнутими то вони рівно
4 перпендикулярними
5 дві прямі називаються паралельними якщо вони не перетинаються
6 дві перпендикулярними якщо при їхньому перетині утворивня прямий кут
7 що не перетинаються
8відрізок
9кут який мае вершіну кута та три сторони
Из равенства внутренних накрест лежащих углов следует равенство соответственных углов, и наоборот. Допустим, у нас есть две параллельные прямые (так как по условию внутренние накрест лежащие углы равны) и секущая, которые образуют углы 1, 2, 3. Углы 1 и 2 равны как внутренние накрест лежащие. А углы 2 и 3 равны как вертикальные. Получаем: ∠∠1 = ∠∠2 и ∠∠2 = ∠∠3. По свойству транзитивности знака равенства следует, что ∠∠1 = ∠∠3. Аналогично доказывается и обратное утверждение.
Отсюда получается признак параллельности прямых по соответственным углам. Именно: прямые параллельны, если соответственные углы равны. Что и требовалось доказать.