Медиана прямоугольного тр-ка равна половине гипотенузы С=90; AC - вертикальный катет; BC - горизонтальный CO=13 - медиана; AB=26 Тр-ки COB и COA - равнобедренные Из точки O опустим перпендикуляры ON и OM на катеты AC и BC соответственно. ON и OM являются и медианами AC+BC=60-26=34 Пусть AC=x⇒BC=34-x CO^2=CM^2+MO^2 CM=1/2*BC=(34-x)/2 MO=CN=1/2*AC=x/2⇒ (34-x)^2/4+x^2/4=169⇒1156-68x+x^2+x^2=676⇒ 2x^2-68x+480=0⇒x^2-34x+240=0⇒ По теореме Виетта x1+x2=34; x1*x2=240⇒ x1=24; x2=10 34-24=10 34-10=24 Один катет - 10, другой - 24
Проведите в окружности произвольную хорду (этап 1) Затем общеизвестным с циркуля и линейки разделите ее пополам перпендикуляром. По свойству радиуса, проведенного перпендикулярно к хорде через ее середину, продолжение получившегося перпендикуляра до окружности будет ее диаметром (этап 2). Получившийся диаметр точно так же разделите перпендикуляром пополам. (этап 3) Получите точку пересечения диаметров - это и будет центр окружности.
Как известно, диаметр делит окружность на две дуги, градусная мера которых 180°. Раствором циркуля, равным радиусу данной окружности, поочередно отметьте на ней три равных дуги. Их общая градусная мера равна 180°, так как раствор циркуля, равный радиусу, отмечает на окружности дугу, равную 60°. Соединив первую (откуда начали ) и четвертую точку, получите диаметр. От первой отложите в другой полуокружности тем же раствором циркуля еще одну точку (5). Эта дуга также равна 60°. Соединив тоску 5 с точкой 3 по другую сторону от проведенного прежде диаметра, получите второй диаметр. Точка пересечения диаметров - центр окружности.
С=90; AC - вертикальный катет; BC - горизонтальный
CO=13 - медиана; AB=26
Тр-ки COB и COA - равнобедренные
Из точки O опустим перпендикуляры ON и OM на катеты AC и BC соответственно. ON и OM являются и медианами
AC+BC=60-26=34
Пусть AC=x⇒BC=34-x
CO^2=CM^2+MO^2
CM=1/2*BC=(34-x)/2
MO=CN=1/2*AC=x/2⇒
(34-x)^2/4+x^2/4=169⇒1156-68x+x^2+x^2=676⇒
2x^2-68x+480=0⇒x^2-34x+240=0⇒
По теореме Виетта
x1+x2=34; x1*x2=240⇒
x1=24; x2=10
34-24=10
34-10=24
Один катет - 10, другой - 24
Затем общеизвестным с циркуля и линейки разделите ее пополам перпендикуляром.
По свойству радиуса, проведенного перпендикулярно к хорде через ее середину, продолжение получившегося перпендикуляра до окружности будет ее диаметром (этап 2).
Получившийся диаметр точно так же разделите перпендикуляром пополам. (этап 3)
Получите точку пересечения диаметров - это и будет центр окружности.
Как известно, диаметр делит окружность на две дуги, градусная мера которых 180°.
Раствором циркуля, равным радиусу данной окружности, поочередно отметьте на ней три равных дуги. Их общая градусная мера равна 180°, так как раствор циркуля, равный радиусу, отмечает на окружности дугу, равную 60°.
Соединив первую (откуда начали ) и четвертую точку, получите диаметр.
От первой отложите в другой полуокружности тем же раствором циркуля еще одну точку (5). Эта дуга также равна 60°.
Соединив тоску 5 с точкой 3 по другую сторону от проведенного прежде диаметра, получите второй диаметр. Точка пересечения диаметров - центр окружности.