Биссектриса, медиана, высота и серединный перпендикуляр, проведённые к основанию равнобедренного треугольника, совпадают между собой. Углы, противолежащие равным сторонам равнобедренного треугольника, равны между собой. Если две стороны и угол между ними одного треугольника равны соответственно двум сторонам и углу между ними другого треугольника, то такие треугольники равны." Решение: Итак, треугольники АМD и DNC - равны между собой, так как AD=DC (BD- медиана), NC=МA (так как МВ=BN - дано, а АВ=ВС - треугольник АВС равнобедренный) и улы ВАС и ВСА между равными сторонами равны. Из равенства тр-ков вытекает равенство сторон МD и ND. Что и требовалось доказать
Сумма углов Δ ACD 180°, угол АСD = 90°( по условию), угол D = 60°, тогда угол САD = 180° - 90° - 60° = 30°. ΔACD - прямоугольный треугольник. По свойству прямоугольного треугольника сторона CD, которая лежит против угла 30° равна половине гипотенузы AD. AD = 2CD. Диагональ делит угол А пополам, значит угол А = 60°, трапеция АВСD - равнобокая, боковые стороны равны AC = CD. рассмотрим Δ АВС , угол САВ = 30°, угол ВСА = 30° ( как угол при параллельных прямых и секущей), Δ АВС - равнобедренный, т.е. АВ = ВС. P = AB + BC + CD + AD = 5X, X = 20 :5 = 4 cм, средняя линия трапеции равна полусумме оснований ВС = 4 см, АD = 2·4 = 8 см (4 + 8)/2 = 6 см ответ 6 см