Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Запишите сокращенно условие и заключение теоремы.
Доказательство:
Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_
Доказать, что АДОЕ - ромб. В тр-ках ДАО и ЕАО АО - общая сторона, нужно доказать, что они равнобедренные. Опустим высоты ОК и ОМ на стороны АВ и АС соответственно. Высоты равны радиусу описанной окружности. В тр-ках АКО и АМО КО=МО, АО - общая сторона и оба прямоугольные, значит они равны , значит ∠КАО=∠МАО ⇒ ∠ДАО=∠ЕАО. Так как ДО║АЕ, а АО - секущая, то ∠ДАО=∠АОЕ и ∠ЕАО=∠ДОА, значит ∠ДАО=∠ДОА и ∠ЕАО=∠ЕОА, следовательно тр-ки АДО и ЕАО равнобедренные и равны (АО - общая, см. выше). Вывод: АД=ДО=ОЕ=ЕА. Доказано.
Два треугольника, которые можно совместить наложением, называются равными.
Из определения непосредственно следует: в равных треугольниках против равных сторон лежат равные углы и обратно — против равных углов лежат равные стороны.
Теорема 1 (первый признак равенства треугольников — по двум сторонам и углу между ними)
Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.
Дано: треугольник ABC и треугольник A_1B_1C_1, AB=A_1B_1, AC=A_1C_1, \angle{A}=\angle{A_1}.
Требуется доказать: треугольник ABC равен треугольнику A_1B_1C_1.
Доказательство:
Доказывается наложением одного из треугольников на другой. Треугольники полностью совместятся, следовательно, по определению они равны.
\boxtimes
Теорема 2 (второй признак равенства треугольников — по стороне и двум прилежащим углам)
Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.
Сделайте чертеж, запишите, что дано и что требуется доказать, и докажите наложением треугольников.
Теорема 3 (третий признак равенства треугольников — по трем сторонам)
Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.
Запишите сокращенно условие и заключение теоремы.
Доказательство:
Для доказательства приложим треугольники большими сторонами. Треугольник A_1B_1C_1 займет положение AB_2C. Треугольник BAB_2 и треугольник BCB_2 — равнобедренные. Из равенства углов при основании получаем, что B=B_
Объяснение:
В тр-ках ДАО и ЕАО АО - общая сторона, нужно доказать, что они равнобедренные.
Опустим высоты ОК и ОМ на стороны АВ и АС соответственно. Высоты равны радиусу описанной окружности. В тр-ках АКО и АМО КО=МО, АО - общая сторона и оба прямоугольные, значит они равны , значит ∠КАО=∠МАО ⇒ ∠ДАО=∠ЕАО.
Так как ДО║АЕ, а АО - секущая, то ∠ДАО=∠АОЕ и ∠ЕАО=∠ДОА, значит ∠ДАО=∠ДОА и ∠ЕАО=∠ЕОА, следовательно тр-ки АДО и ЕАО равнобедренные и равны (АО - общая, см. выше).
Вывод: АД=ДО=ОЕ=ЕА.
Доказано.