Задачка для самых умных)) Переріз циліндра площиною, паралельною до його висоти, що дорівнює Н, є квадрат, який відтинає від кола основи дугу α. Знайти відстань від цього перерізу до осі циліндра.
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
ДАНО: ∆АВС – прямоугольный, ∠С=90°; вписанная окружность с центром в точке О; К – точка касания; радиус=2см; ВК–АК=2см
НАЙТИ: АВ; АС; ВС
Стороны треугольника являются касательными к вписанной окружности. Обозначим точки касания Д и М, соединим О и М, О и Д. ОК, ОД и ОМ – радиусы. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания, поэтому ОК⏊АВ, ОМ ⏊ АС и ОД ⏊ ВС. Получим четырехугольник МОДС. У него МО=ОД=2см. Если две прямые перпендикулярны третьей прямой, значит эти две прямые параллельны и так как ОМ и СД перпендикулярны АС, то ОМ || СД, и МС ⏊ ВС и ОД ⏊ ВС, значит
МС || ОД, а у четырехугольника, у которого противоположные стороны параллельны, они равны, поэтому ОМ=СД=2см, ОД=МС=2см → МОДС – квадрат. Пусть АК=х, тогда ВК=х+2. Отрезки касательных, соединяясь в одной точке равны от вершины до точки касания, поэтому:
АМ=АК=х, ВК=ВД=х+2, СМ=СД=2см. Тогда:
АС=2+х, АВ=х+х+2=2х+2, ВС=2+х+2=х+4
АС=2+х
АВ=2х+2
ВС=х+4
Составим уравнение, используя теорему Пифагора:
АС²+ВС²=АВ²
(2х+2)²=(2+х)²+(х+4)²
4х²+8х+4=4+4х+х²+х²+8х+16
4х²+8х+4=2х²+12х+20
4х²+8х–2х²–12х–20+4=0
2х²–4х–16=0
a=2, b= –4; c= –16
Д=b²–4ac=(–4)²–4•2•(–16)=16+128=144=12²
х₂= –2 нам не подходит, так как сторона не может быть отрицательной, тогда подходит х₁=4
Объяснение:
а)
Тр-к АВО=тр-ку СВО - прямоугольные
АО=СО - по условию
<ВАО=<ВСО - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (если катет и прилежащий острый угол одного тр-ка соответственно равны катету и прилежащему острому углу другого тр-ка, то такие Тр-ки равны)
Тр-к АDO= тр-ку СDO - прямоугольные
АО=СО - по условию
<DAO=<DCO - по условию
Тр-ки равны по 2 признаку равенства прямоугольных треугольников (по катету и прилежащему острому углу)
б)
Тр-к АОВ=тр-ку DOC
AO=DO - по условию
ВО=СО - по условию
<АОВ=<DOC - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
Тр-к ВОD=тр-ку СОА
ВО=СО - по условию
АО=DO - по условию
<ВОD=<COA - как вертикальные
Тр-ки равны по 2 сторонам и углу между ними (1 признак)
2
Тр-к равнобедренный
Р=3,2 м
Боковая сторона = b м
Основание а=( b-1) м
Найти : а ; b
Р=2b+a
3,2=2b+(b-1)
3,2=2b+b-1
3,2=3b-1
3b=3,2+1
3b=4,2
b=1,4 м - боковая сторона
а=1,4-1=0,4 м - основание
ответ : 1,4 м ; 1,4 м ; 0,4 м
АС=6см
АВ=10см
ВС=8см
Объяснение:
ДАНО: ∆АВС – прямоугольный, ∠С=90°; вписанная окружность с центром в точке О; К – точка касания; радиус=2см; ВК–АК=2см
НАЙТИ: АВ; АС; ВС
Стороны треугольника являются касательными к вписанной окружности. Обозначим точки касания Д и М, соединим О и М, О и Д. ОК, ОД и ОМ – радиусы. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания, поэтому ОК⏊АВ, ОМ ⏊ АС и ОД ⏊ ВС. Получим четырехугольник МОДС. У него МО=ОД=2см. Если две прямые перпендикулярны третьей прямой, значит эти две прямые параллельны и так как ОМ и СД перпендикулярны АС, то ОМ || СД, и МС ⏊ ВС и ОД ⏊ ВС, значит
МС || ОД, а у четырехугольника, у которого противоположные стороны параллельны, они равны, поэтому ОМ=СД=2см, ОД=МС=2см → МОДС – квадрат. Пусть АК=х, тогда ВК=х+2. Отрезки касательных, соединяясь в одной точке равны от вершины до точки касания, поэтому:
АМ=АК=х, ВК=ВД=х+2, СМ=СД=2см. Тогда:
АС=2+х, АВ=х+х+2=2х+2, ВС=2+х+2=х+4
АС=2+х
АВ=2х+2
ВС=х+4
Составим уравнение, используя теорему Пифагора:
АС²+ВС²=АВ²
(2х+2)²=(2+х)²+(х+4)²
4х²+8х+4=4+4х+х²+х²+8х+16
4х²+8х+4=2х²+12х+20
4х²+8х–2х²–12х–20+4=0
2х²–4х–16=0
a=2, b= –4; c= –16
Д=b²–4ac=(–4)²–4•2•(–16)=16+128=144=12²
х₂= –2 нам не подходит, так как сторона не может быть отрицательной, тогда подходит х₁=4
АС=2+х=2+4=6см
АВ=2х+2=2•4+2=8+2=10см
ВС=х+4=4+4=8см