А2.расмотрим треугольники АДБ и ДБСАД=СБ по условию,углы АДБ и ДВС тоже равны по условию,прямая ДБ общая ,следовательно треугольники равны по двум сторонам и углу между ними,следовательно АБ=СД. А3.Короче,я не уверена, но по логике это должно быть правильно) Рассмотрим треугольник СНВ, угол СНВ 90, угол НВС 60, значит угол НСВ 30.По теореме, что против угла в 30 градусов лежит катет равен половины гипотенузы, то сторона СВ равно 4 см. Рассмотрим прямоугольный треугольник СНВ, по теорене пифагора найдем СН. СН квадрат= ВС квадрат - НВ квадратСН= корень из 12Рассмотрим следущий прямоугольный треугольник АСН. Угол АНС 90, НСА 60 и САН 30. Зная что СН= корень из 12, и катет лежит против угла 30. Можем сказать что гипотенуза АС= 2 корня из 12. И по теореме Пифагора найдем АН.АН квадрат= АС квадрат - СН квадратАН=6 см.ответ: 6 см
А3.Короче,я не уверена, но по логике это должно быть правильно) Рассмотрим треугольник СНВ, угол СНВ 90, угол НВС 60, значит угол НСВ 30.По теореме, что против угла в 30 градусов лежит катет равен половины гипотенузы, то сторона СВ равно 4 см. Рассмотрим прямоугольный треугольник СНВ, по теорене пифагора найдем СН. СН квадрат= ВС квадрат - НВ квадратСН= корень из 12Рассмотрим следущий прямоугольный треугольник АСН. Угол АНС 90, НСА 60 и САН 30. Зная что СН= корень из 12, и катет лежит против угла 30. Можем сказать что гипотенуза АС= 2 корня из 12. И по теореме Пифагора найдем АН.АН квадрат= АС квадрат - СН квадратАН=6 см.ответ: 6 см
Пусть отрезки будут АВ=25 см с проекцией ВС и МК=30 см с проекцией КЕ.
Расстояние между параллельными плоскостями одинаково в любой точке и равно длине общего перпендикуляра между ними.
Тогда ∆ АВС и ∆ МКЕ прямоугольные с прямыми углами С и Е.
Выразим по т.Пифагора АС из ∆ АВС
АС²=АВ²-ВС²
МЕ²=МК²-ЕК²
АС=МЕ.
АВ²-ВС²=МК²-ЕК²
Пусть ВС=х
625-х²=900-х²-22х-121 ⇒
-900+625+121= х²-х²-22х Проведя необходимые вычисления, получим
22х=154 ⇒ х=7
Из ∆ АВС по т.Пифагора АС=24- это расстояние между плоскостями.
Искомый угол АВС.
sin∠ABC=АС:АВ=24/25=0,96. Это синус угла 73°74'