Задан куб ABCDA1B1C1D1, ребро которого равно 1 см. Точка L – середина ребра AA1. а) Нарисуйте этот куб и систему координат так, чтобы её начало совпадало с точкой A. Найдите координаты точек B, L, D и A1. б) Найдите длину отрезка BL, используя формулу расстояния между точками в пространстве. в) Найдите cos (см.фото)
MN║LK ⇒ MN, LK ⊂ (MNL), в этой плоскости рассмотрим четырёхугольник MNKL: у него две противоположные стороны параллельны и равны (MN, LK),поэтому это точно параллелограмм у ромба помимо этого ещё все стороны равны, значит чтобы доказать, что MNLK - ромб осталось только доказать, что MK=NM т.к. если это выполняется, то NL=MK - как противоположные стороны параллелограмма, а значит MN=NL=LK=KM.
BD=2MK т.к. MK - средняя линия ΔBDC.
BD=AC - по условию.
2MK=BD=AC=2MN ⇒ MK=MN. Доказали, значит MNLK это параллелограмм у которого все стороны равны, то есть это ромб.
Если ВА⊥АD, то ∠А=90(по опр.перпендикуляра), и ∠В=90, так как ВА⊥ВС, так как ВС∫∫АD(по св-ву парал. прямых) ⇒ АВСD - прямоугольная трапеция( по опр.). Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6. Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ) Найдем основание трапеции: АМ+МD 6+6=12
Дано: D∉(ABC); AC=BD; AL=LB (L∈AB); BK=KC (K∈BC); CM=MD (M∈CD); DN=NA (N∈DA).
Доказать: MNLK - ромб.
AC║MN и AC=2MN т.к. MN - средняя линия ΔACD.
AC║LK и AC=2LK т.к. LK - средняя линия ΔACB.
MN║AC║LK ⇒ MN║LK; 2MN=AC=2LK ⇒ MN=LK
MN║LK ⇒ MN, LK ⊂ (MNL), в этой плоскости рассмотрим четырёхугольник MNKL: у него две противоположные стороны параллельны и равны (MN, LK),поэтому это точно параллелограмм у ромба помимо этого ещё все стороны равны, значит чтобы доказать, что MNLK - ромб осталось только доказать, что MK=NM т.к. если это выполняется, то NL=MK - как противоположные стороны параллелограмма, а значит MN=NL=LK=KM.
BD=2MK т.к. MK - средняя линия ΔBDC.
BD=AC - по условию.
2MK=BD=AC=2MN ⇒ MK=MN. Доказали, значит MNLK это параллелограмм у которого все стороны равны, то есть это ромб.
Проведем высоту СМ. И рассмотрим получившийся четырехугольник ВАМС, это прямоугольник, так как ∠А=∠В=90, и ∠М=∠С=90(по опр. высоты) ⇒ВА=СМ=6, и ВС=АМ=6.
Рассмотрим ΔСМD: СМ мы провели так, что она разделила ∠ВСD=135, на ∠МСВ=90 и ∠МСD=45. Если ∠МСD=45, а ∠СМD=90(по опр. высоты), то ∠СDM=45(по теореме о сумме ∠ в Δ) ⇒ ΔСМD - равнобедренный (по признаку) ⇒ СМ=MD=6(по опр. равноб. Δ)
Найдем основание трапеции: АМ+МD
6+6=12
Найдем площадь:
S=
ответ:54