Задан треугольник ABC, AB = 8. Из вершины C проведена медиана CM. На медиане CM как на диаметре построена окружность, которая пересекает сторону BC в точке F так, что F – середина BC. Найдите радиус окружности, описанной около треугольника ABC.
Тетраэдр называется правильным, если все его грани - равносторонние треугольники. Вершина нашего тетраэдра проецируется в центр его основания, значит тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен отношению высоты тетраэдра к 2/3 высоты основания (так как в правильном треугольнике - основании высота является и медианой, то расстояние от вершины до центра основания равно 2/3 высоты основания). Высота основания h=(√3/2)*a, где а - сторона треугольника (ребро нашего тетраэдра). Расстояние от вершины тетраэдра до центра основания равно (2/3)*h=(√3/3)*a. Высота тетраэдра равна по Пифагору H=√(a²-(3/9)*a²)=(√6/3)*a. Тогда тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен Tgα=H/h=(√6/3)*a/(√3/3)*a=√6/√3=√2. ответ: Tgα=√2.
a) 100°; 40°; 40°.
б) 90°; 45°; 45°.
в) 50°; 65°; 65°.
Объяснение:
По теореме о сумме углов треугольника (сумма внутренних углов треугольника равна 180°).
В равнобедренном треугольнике углы при основании равны.
a) Значит, два угла при основании равны по 40°. Сумма углов при основании равна
40° + 40° = 80°
Зная это, найдем третий угол (при вершине):
180° - 80° = 100 (градусов) - угол при вершине.
б) Значит, на углы при основании остаётся:
180° - 90° = 90°
Так как они равны в равнобедренном треугольнике:
90° : 2 = 45 (градусов) - величина каждого угла при основании.
в) Значит, на углы при основании остаётся:
180° - 50° = 130°
Так как они равны в равнобедренном треугольнике:
130° : 2 = 65 (градусов) - величина каждого угла при основании.
треугольники. Вершина нашего тетраэдра проецируется в центр его основания, значит тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен отношению высоты тетраэдра к 2/3 высоты основания (так как в правильном треугольнике - основании высота является и медианой, то расстояние от вершины до центра основания равно 2/3 высоты основания).
Высота основания h=(√3/2)*a, где а - сторона треугольника (ребро нашего тетраэдра).
Расстояние от вершины тетраэдра до центра основания равно
(2/3)*h=(√3/3)*a.
Высота тетраэдра равна по Пифагору H=√(a²-(3/9)*a²)=(√6/3)*a.
Тогда тангенс угла наклона бокового ребра правильного тетраэдра к плоскости его основания равен
Tgα=H/h=(√6/3)*a/(√3/3)*a=√6/√3=√2.
ответ: Tgα=√2.