Пусть сторона АВ треугольника АВС равна х см тогда сторона ВС равна 2 1/3 х см, а сторона АС равна (2 1/3 х + 2) см (если сторона ВС на 2 см меньше стороны АС, то сторона АС, наоборот, на 2 см больше стороны ВС). По условию задачи известно, что периметр треугольника АВС (периметр треугольника равен сумме трех его сторон; Р = АВ + ВС + АС) равен (х + 2 1/3 х + (2 1/3 х + 2)) см или 36 см. Составим уравнение и решим его.
Пусть сторона АВ треугольника АВС равна х см тогда сторона ВС равна 2 1/3 х см, а сторона АС равна (2 1/3 х + 2) см (если сторона ВС на 2 см меньше стороны АС, то сторона АС, наоборот, на 2 см больше стороны ВС). По условию задачи известно, что периметр треугольника АВС (периметр треугольника равен сумме трех его сторон; Р = АВ + ВС + АС) равен (х + 2 1/3 х + (2 1/3 х + 2)) см или 36 см. Составим уравнение и решим его.
x + 2 1/3 x + (2 1/3 x + 2) = 36;
x + 2 1/3 x + 2 1/3 x + 2 = 36;
5 2/3 x = 36 - 2;
17/3 x = 34;
x = 34 : 17/3;
x = 34 * 3/17;
x = 6 (см) - сторона АВ;
2 1/3 * x = 7/3 * 6 = 14 (см) - сторона ВС;
2 1/3 x + 2 = 14 + 2 = 16 (см) - сторона АС.
ответ. АВ = 6 см, ВС = 14 см, АС = 16 см.
ответ:
объяснение:
1) 2*9=18- это две стороны по 9, 26-18=8/2=4-это другая сторона, s=9*4=36
2)s=a*a=169, a=13, p=13*4=52
3) s=a*b=96, 3*b=96, b=96/3=32, p=2(a+b)=2(3+32)=70
4)4a=164, a=164/4=41
6)a=x, b=6x, 2(x+6x)=70, 7x=35, x=5, 6x=6*5=30, a=5, b=30, s(пр)=5*30=150, s(кв)=150, (у равновеликих фигур площади равны),
s(кв)=a^2, a^2=150, a=v150=v(25*6)=5v6, p(кв)=4*5v6=20v6
7)s=a^2*v3/4=36*v3/4=9v3