1.В равных треугольниках против равных сторон лежат равные
б) углы
2.Утверждение, справедливость которого устанавливается путём рассуждение называется
в) теоремой
3.Утверждение "Если две стороны и угол одного треугольника равны двум сторонам и углу другого треугольника, то такие треугольники равны", является:
Это не совсем первый признак. Он звучит так как " Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника... поэтому в) правильного ответа нет
4.Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется:
б) биссектрисой
5.В равнобедренном треугольнике:
а) углы при основании равны б) биссектриса, проведена к основанию, является медианой и высотой
6.Утверждение "Если сторона и две прилежащих к ней угла одного треугольника соответственно равны сторонам и углам другого треугольника, то такие треугольники равны", является:
Построим сумму векторов а и b и их разность. ↑АС = ↑р = ↑а + ↑b ↑DB = ↑q = ↑a - ↑b Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А. ∠ЕАС - искомый. Из ΔABD найдем длину вектора q по теореме косинусов: |↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49 |↑q| = 7 Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°. Из ΔABС найдем длину вектора р по теореме косинусов: |↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129 |↑p| = √129
Из ΔЕАС по теореме косинусов: cos α = (AE² + AC² - EC²) / (2 · AE · AC) cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903 cos α = - 13√129/301
б) углы
2.Утверждение, справедливость которого устанавливается путём рассуждение называется
в) теоремой
3.Утверждение "Если две стороны и угол одного треугольника равны двум сторонам и углу другого треугольника, то такие треугольники равны", является:
Это не совсем первый признак. Он звучит так как " Если две стороны и угол между ними одного треугольника равны двум сторонам и углу между ними другого треугольника...
поэтому
в) правильного ответа нет
4.Отрезок биссектрисы угла треугольника, соединяющий вершину треугольника с точкой противоположной стороны, называется:
б) биссектрисой
5.В равнобедренном треугольнике:
а) углы при основании равны
б) биссектриса, проведена к основанию, является медианой и высотой
6.Утверждение "Если сторона и две прилежащих к ней угла одного треугольника соответственно равны сторонам и углам другого треугольника, то такие треугольники равны", является:
в) нет правильного ответа
Признак формулируется не так
7.Третий признак равенства треугольников называется:
б) по трём сторонам
8.Из третьего признака равенства треугольника следует, что треугольник-фигура:
в) жёсткая
9.Продолжи фразу: "Из точки, не лежащей на прямой,можно провести перпендикуляр к этой прямой и при том только один "
10.Отрезок, соединяющий две точки окружности называется:
в) хордой
11.Хорда, проходящая через центр окружности, называется:
б) диаметром
12.Любые две точки окружности делят её на:
а) две части
↑АС = ↑р = ↑а + ↑b
↑DB = ↑q = ↑a - ↑b
Чтобы найти угол между векторами p и q, построим вектор, равный вектору q, с началом в точке А.
∠ЕАС - искомый.
Из ΔABD найдем длину вектора q по теореме косинусов:
|↑q|² = AB² + AD² - 2·AB·AD·cos60° = 25 + 64 - 2·5·8·1/2 = 89 - 40 = 49
|↑q| = 7
Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°, значит ∠АВС = 120°.
Из ΔABС найдем длину вектора р по теореме косинусов:
|↑p|² = AB² + BC² - 2·AB·BC·cos120° = 25 + 64 + 2·5·8·1/2 = 89 + 40 = 129
|↑p| = √129
Из ΔЕАС по теореме косинусов:
cos α = (AE² + AC² - EC²) / (2 · AE · AC)
cos α = (49 + 129 - 256) / (2 · 7 · √129) = - 78 / (14√129) = - 39√129 / 903
cos α = - 13√129/301