Задание 1 Дескриптор: Обучающийся - применяет свойства параллельных прямых для каждого случая -составляет выражение по условию задачи - находит неизвестные углы. Задание 2 В равнобедренном треугольнике АВС с основанием АС проведена биссектриса АК. Найдите угол АКС, если угол С=50⁰
1) Как называется утверждение которое нельзя доказать?
Аксиома.
2) Из теоремы "Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны" составьте обратную.
Меняем "если" и "то" местами: Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны.
3) Как называются прямые на плоскости, не имеющие общих точек?
Параллельными.
4) Если прямая a параллельна прямой b, и прямая а параллельна прямой с, то что можно сказать о прямых b и c?
Тогда b║c.
5) Изобразите: две параллельные прямые пересеченные секущей, отметьте числами 5 и 6 углы, которые являются односторонними.
См. рисунок.
6) О равенстве каких углов можно утверждать, если параллельные прямые пересечены секущей.
Тогда равны накрест лежащие углы: ∠1 = ∠7, ∠4 = ∠6
и равны соответственные углы: ∠1 = ∠5, ∠2 = ∠6, ∠3 = ∠7, ∠4 = ∠8.
угол С = 90 градусов, треугольник АВС - прямоугольный
AB = BC/sinA = 8√3 / sin60 = 8√3 / √3/2 = 16
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 36 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 36√3 *sin30 = 36√3 * 1/2 = 18√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 18√3 *sin60 = 18√3 * √3/2 = 27
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 40 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 40√3 *sin30 = 40√3 * 1/2 = 20√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 20√3 *sin60 = 20√3 * √3/2 = 30
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 88 корень из 3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 88√3 *sin30 = 88√3 * 1/2 = 44√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 44√3 *sin60 = 44√3 * √3/2 = 66
В треугольнике АВС угол С = 90 градусов, угол А = 30 градусов, АВ = 52 корень из
3. Найти высоту СН.
угол С = 90 градусов, треугольник АВС - прямоугольный
BC = AB*sinA = 52√3 *sin30 = 52√3 * 1/2 = 26√3
<B = 90 - <A = 60 Град
CH = BC *sinB = 26√3 *sin60 = 26√3 * √3/2 = 39