Задание 1. (Ф. И. дата)
Заполни таблицу:
м- середина отрезка AB
- ", у - "+"
(с; 5)
A
в
(-3;0)
(0;-3)
(-1;4) T (2; 4)
(0;0)
(0;0)
(5;c)
(6;4)
M
(-2;-3)
Задание 2. (Ф. И. дата)
Заполни таблицу:
| | AB = (x2-x) + y2 - у)? |
А (11;-1) (0; 3) (12;-2) (-12, 2) (0;0)
в (-4; 0) (-3;0) (5;-9) (0; 7)
|AB|
Дано :
Четырёхугольник ABCD - параллелограмм.
Отрезок DB - диагональ = 13 см.
∠ABD = 90°.
CD = 12 см.
Найти :
S(ABCD) = ?
AB ║ CD (по определению параллелограмма).
Рассмотрим накрест лежащие ∠ABD и ∠BDC при параллельных прямых АВ и CD и секущей BD.
При пересечении двух прямых секущей накрест лежащие углы равны.То есть -
∠ABD = ∠BDC = 90°.
Тогда отрезок BD - ещё и высота параллелограмма ABCD (по определению).
Площадь параллелограмма равна произведению его стороны и высоты, опущенной на эту сторону.Следовательно -
S(ABCD) = BD*CD
S(ABCD) = 13 см*12 см
S(ABCD) = 156 см².
156 см².
Р=10+12+14=36 см
2. 4+7=11 (частей)
Одна часть: 44/11 = 2
Большее основание равно: 2*4=8 см
Меньшее основание равно: 2*7=14 см
3. Диагонали делят острые углы трапеции пополам => получаем ромб, у которого все стороны равны 8 см. Р=8+8+8+10=34 см
4. Имеем трапецию ABCD. Основания - AD, BC. Диагонали пересекаются в точке P. MN - средняя линия, пересекаемая сторону BD в точке О и AC в точке K. В треугольнике ABC средняя линия MK равна 1/2*BC, а средняя линия KN в треугольнике ACD = 1/2*AD.
Треугольник BCP одновременно прямоугольный и равнобедренный, соответственно высота, опущенная из точки P к вершине, является медианой. Она равна 1/2*BC.
В треугольнике APD, высота, опущенная из точки P, - медиана. Равна 1/2*AD.
Что и требовалось доказать.