1) тр АВК = тр СДН ( по двум сторонам и углу м/д ними), а именно: АВ=СД по усл ВК=ДН как высоты в трапеции уг АВК= уг СДН ( см доказательство ниже в скобках) (уг ВАК=уг СДА как углы при основании р/б трап; уг СДА= уг НСД как внутр накрестлеж при BH||AD и секущ СД, ⇒ уг ВАК = уг НСД; далее по т о сумме углов в треугольнике уг АВК= 180-90-уг ВАК и уг СДН= 180-90-уг НСД, но уг ВАК=уг НСД,⇒ угАВК=угСДН) 2) следовательно Sтрап = Sпрямоуг =89 кв дм
Если соединить центр окружности с вершинами многоугольника, получим треугольники, сумма сторон которого, расположенных вне окружности, - периметр описанного многоугольника. Проведем из центра ( общей вершины каждого получившегося треугольника) высоты к сторонам многоугольника. . Т.к. площадь треугольника находят по формуле S=a*h:2, а высота здесь равна радиусу, проведенному в точку касание окружности со стороной каждого треугольника, ⇒ S=a*r:2 Площадь многоугольника равна сумме площадей всех этих треугольников с вершиной в центре вписанной в него окружности. S=а₁*r:2+ a₂*r:2+a(n)*r:2=r*(a₁+a₂+a₃+a(n)):2=r*P:2=r*p ⇒ Площадь многоугольника равна произведению его полупериметра и радиуса окружности, вписанной в этот многоугольник.( верно, естественно, и для треугольника с вписанной в него окружностью) S=51*4:2=102
АВ=СД по усл
ВК=ДН как высоты в трапеции
уг АВК= уг СДН ( см доказательство ниже в скобках)
(уг ВАК=уг СДА как углы при основании р/б трап;
уг СДА= уг НСД как внутр накрестлеж при BH||AD и секущ СД,
⇒ уг ВАК = уг НСД;
далее по т о сумме углов в треугольнике уг АВК= 180-90-уг ВАК и
уг СДН= 180-90-уг НСД,
но уг ВАК=уг НСД,⇒
угАВК=угСДН)
2) следовательно Sтрап = Sпрямоуг =89 кв дм
Проведем из центра ( общей вершины каждого получившегося треугольника) высоты к сторонам многоугольника. .
Т.к. площадь треугольника находят по формуле
S=a*h:2,
а высота здесь равна радиусу, проведенному в точку касание окружности со стороной каждого треугольника, ⇒
S=a*r:2
Площадь многоугольника равна сумме площадей всех этих треугольников с вершиной в центре вписанной в него окружности.
S=а₁*r:2+ a₂*r:2+a(n)*r:2=r*(a₁+a₂+a₃+a(n)):2=r*P:2=r*p ⇒
Площадь многоугольника равна произведению его полупериметра и радиуса окружности, вписанной в этот многоугольник.( верно, естественно, и для треугольника с вписанной в него окружностью)
S=51*4:2=102