Задание 1. Опишите поворот отрезка АВ относительно точки О на угол 60° против часовой стрелки. Задание 2. Найдите координаты точек симметричных точке А(-2 ; -1) относительно : а) оси Ох; в) оси Оу; с ) начала координат. Задание 3. При параллельном переносе точка А(3; -1) переходит в точку А1(5,-4). В какую точку в результате данного переноса перейдёт точка В(-7;0)? Задание 4. Найдите высоту ракеты, если длина её тени равна 36м, а длина тени космонавта 1м. 20 см. Задание 5. Прямая, параллельная основанию треугольника, делит его на треугольник и трапецию, площади которых относятся как 4:5. Периметр образовавшегося треугольника равен 20 см. Найдите периметр данного треугольника. Задание 6. Постройте из фигуры F фигуру F1 гомотетией (О;2)
Пусть х° первая дуга, тогда 2х°-вторая, 3х°-третья.
Вся окружность 360°. Поэтому
х+2х+3х=360
6х=360
х=360:6
х=60
60° -первая дуга (U AB)
2*60°=120° - вторая дуга (U BC)
3*60°=180° - третья дуга (U AC)
Углы ∆АВС - вписанные. Вписанный угол = половине дуги, на которую опирается.
L A= ½U BC
L A=½*120°=60°
L B=½U AC
L B= ½*180°=90°
L C=½*U AB
L C=½*60°=30°
ответ: 60°, 90° и 30°
2)120градусов
3)Радиус в точке касания перпендикулярен касательной. Следовательно, треугольник ОВА прямоугольный с равными острыми углами (так как сумма острых углов прямоугольного треугольника равна 90°: 45°+45°=90°).
Таким образом, треугольник ОВА равнобедренный и ОВ=АВ=5см.
ОВ - это радиус окружности.
ответ: R=5см.
4)30 градусов.
Дело в том, что "половина диаметра" - это всего-навсего радиус, если соединить концы хорды с центром окружности, получим равносторонний треугольник, углы которого по 60 градусов, ну а касательная перпендикулярна радиусу(стороне этого треугольника), поэтому искомый угол будет 90-60=30.
Нарисуй, всё сразу станет понятно.
Да, извини, решение привёл на русском языке, просто большему количеству людей оно будет доступно.
Пусть данный ΔАВС, ∟A = 60 °, ∟B = 70 °, АВ = 2 см, AD = 1 см.
Найдем углы ΔBDC.
В ΔABD проведем медиану DK.
АК = КВ = 1 / 2АВ = 2: 2 = 1 см.
Рассмотрим ΔAKD - piвнобедрений (AD = АК = 1 см),
Если ∟A = 60 °, то ΔAKD - piвносторонний.
Итак, AD = АК = KD, ∟А = ∟AКD = ∟KDA = 60 °.
∟ВКD i ∟AKD - смежные, тогда ∟BKD + ∟AKD = 180 °.
∟BKD = 180 ° - 60 ° = 120 °.
ΔBKD - равнобедренный (KB = KD = 1 см), тогда
∟KBD = ∟KDB = (180 ° - 120 °): 2 = 30 °.
Рассмотрим ΔАВС:
∟A + ∟B + ∟C = 180 °. ∟C = 180 ° - (60 ° + 70 °); ∟C = 50 °.
∟B = ∟KBD + ∟DBC; ∟DBC = 70 ° - 30 ° = 40 °.
Рассмотрим ΔBDC:
∟DBC + ∟C + ∟BDC = 180 °.
40 ° + 50 ° + ∟BDC = 180 °. ∟BDC = 180 ° - 90 ° = 90 °.
Biдповидь: ∟BDC = 90 °; ∟DBC = 40 °; ∟C = 50 °
Объяснение:
1)Найдем сначала градусные меры дуг из отношения:
Пусть х° первая дуга, тогда 2х°-вторая, 3х°-третья.
Вся окружность 360°. Поэтому
х+2х+3х=360
6х=360
х=360:6
х=60
60° -первая дуга (U AB)
2*60°=120° - вторая дуга (U BC)
3*60°=180° - третья дуга (U AC)
Углы ∆АВС - вписанные. Вписанный угол = половине дуги, на которую опирается.
L A= ½U BC
L A=½*120°=60°
L B=½U AC
L B= ½*180°=90°
L C=½*U AB
L C=½*60°=30°
ответ: 60°, 90° и 30°
2)120градусов
3)Радиус в точке касания перпендикулярен касательной. Следовательно, треугольник ОВА прямоугольный с равными острыми углами (так как сумма острых углов прямоугольного треугольника равна 90°: 45°+45°=90°).
Таким образом, треугольник ОВА равнобедренный и ОВ=АВ=5см.
ОВ - это радиус окружности.
ответ: R=5см.
4)30 градусов.
Дело в том, что "половина диаметра" - это всего-навсего радиус, если соединить концы хорды с центром окружности, получим равносторонний треугольник, углы которого по 60 градусов, ну а касательная перпендикулярна радиусу(стороне этого треугольника), поэтому искомый угол будет 90-60=30.
Нарисуй, всё сразу станет понятно.
Да, извини, решение привёл на русском языке, просто большему количеству людей оно будет доступно.
Объяснение: