Если два голубя вылетели и прилетели одновременно, с одинаковой скоростью, то расстояние от верха дома и от вершины столба до тачки встречи одинаковое.
Получается два прямоугольных треугольника с одинаковыми гипотенузами. Обозначаем расстояние от основания дома до места встречи - х, расстояние от основания фонаря до места встречи - у. Составляем систему уравнений.
Объяснение:
Если два голубя вылетели и прилетели одновременно, с одинаковой скоростью, то расстояние от верха дома и от вершины столба до тачки встречи одинаковое.
Получается два прямоугольных треугольника с одинаковыми гипотенузами. Обозначаем расстояние от основания дома до места встречи - х, расстояние от основания фонаря до места встречи - у. Составляем систему уравнений.
12²+х²=5²+у²
х+у=17 ⇒ х=17-у - подставляем в первое уравнение;
12²+(17-у)²=5²+у²
12²+17²-34у+у²=5²+у²
34у=12²+17²-5²=408
у=408/34=12 м - расстояние от фонаря;
х=17-12=5 м - расстояние от дома.
Первый .
Для решения применим теорему косинусов для треугольника.
ВС2 = АВ2 + АС2 – 2 * АВ * ВС * CosA.
ВС2 = 9 + 36 – 2 * 3 * 6 * (1 / 2).
ВС2 = 45 – 18 = 27.
ВС = √27 = 3 * √3 см.
Второй .
Проведем высоту ВН.
В прямоугольном треугольнике АВН катет АН лежит против угла 300, тогда АН = АВ / 2 = 3 / 2 = 1,5 см. СН = АС – АН = 6 – 1,5 = 4,5 см.
Тогда ВН2 = АВ2 – АН2 = 9 – 2,25 = 6,75.
В прямоугольном треугольнике ВСН, ВС2 = ВН2 + СН2 = 6,75 + 20,25 = 27.
ВС = √27 = 3 * √3 см.
ответ: Длина стороны ВС равна ВС 3 * √3 см.
Объяснение: