Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон. Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой. Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны. Обязательно сделайте рисунок. ( не получается его добавить) Гипотенуза треугольника равна 5+12=17 В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе. Один катет равен 12+х другой ( искомый )- равен х+5 Составим уравнение: 17²=(х+5)²+(12+х)² 289=х²+10х+25+144+24х+х² 120=2х²+34х (сократим на 2) х²+17х-60=0 Решив уравнение через дискриминант, найдем х=3 (второй корень отрицательный и не подходит) Меньший катет( лежит против меньшего угла) равен 3+5=8 Больший равен 3+12=15 см Настало время применить теорему, данную в начале задачи: Обозначим оди из отрезков катета у, второй 8-у у:(8-у)=15:17 17у=120-15у 32у=120 у=3,75 см - первый отрезок 8-3,75=4,25 см - второй отрезок.
Плоский угол при вершине пирамиды- это угол при вершине боковой грани, противолежащей стороне при основании пирамиды.
Так как пирамида правильная, то боковые рёбра равны треугольник боковой грани равнобедренный, а учитывая то, что угол при его вершине равен 60°, он ещё и правильный, то есть равносторонний, значит все рёбра пирамиды равны.
Высота пирамиды имеет основание в центре описанной окружности около основания пирамиды.
Пусть сторона основания (ребро пирамиды) равна а, тогда R=a/√3.
В прямоугольном треугольнике, образованном высотой пирамиды, её боковым ребром и радиусом описанной около основания окружности:
a²=R²+h²,
a²=a²/3+4²,
a²-16=a²/3,
3а²-48=а²,
2а²=48,
а²=24.
Площадь боковой грани: S=a²√3/4=24√3/4=6√3 см².
Площадь боковой поверхности: Sб=3S=18√3 см² - это ответ.
Решение первой задачи. Оно несколько громоздкое, может, разобравшись, сумеете дать короче.
Биссектриса внутреннего угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.
Для решения задачи нужно сначала найти катет треугольника, который делится биссектрисой.
Вспомним свойство отрезков касательных из одной точки к окружности. Эти отрезки равны.
Обязательно сделайте рисунок. ( не получается его добавить)
Гипотенуза треугольника равна 5+12=17
В каждом катете есть отрезок, равный одному из отрезков кастательных из той же точки к гипотенузе.
Один катет равен 12+х
другой ( искомый )- равен х+5
Составим уравнение:
17²=(х+5)²+(12+х)²
289=х²+10х+25+144+24х+х²
120=2х²+34х (сократим на 2)
х²+17х-60=0
Решив уравнение через дискриминант, найдем
х=3 (второй корень отрицательный и не подходит)
Меньший катет( лежит против меньшего угла) равен 3+5=8
Больший равен 3+12=15 см
Настало время применить теорему, данную в начале задачи:
Обозначим оди из отрезков катета у, второй 8-у
у:(8-у)=15:17
17у=120-15у
32у=120
у=3,75 см - первый отрезок
8-3,75=4,25 см - второй отрезок.
Плоский угол при вершине пирамиды- это угол при вершине боковой грани, противолежащей стороне при основании пирамиды.
Так как пирамида правильная, то боковые рёбра равны треугольник боковой грани равнобедренный, а учитывая то, что угол при его вершине равен 60°, он ещё и правильный, то есть равносторонний, значит все рёбра пирамиды равны.
Высота пирамиды имеет основание в центре описанной окружности около основания пирамиды.
Пусть сторона основания (ребро пирамиды) равна а, тогда R=a/√3.
В прямоугольном треугольнике, образованном высотой пирамиды, её боковым ребром и радиусом описанной около основания окружности:
a²=R²+h²,
a²=a²/3+4²,
a²-16=a²/3,
3а²-48=а²,
2а²=48,
а²=24.
Площадь боковой грани: S=a²√3/4=24√3/4=6√3 см².
Площадь боковой поверхности: Sб=3S=18√3 см² - это ответ.