Треугольник АВС, МН-средняя линия=1/2АВ, проводим высоту СК на АВ, О-пересечение СК и МН, АВ=4х, СК=2у, площадь АВС=1/2*АВ*СК=1/2*4х*2у=4ху, треугольник АВС подобен треугольнику СМН по двум равным углам (АВ параллельна МН), угол В=уголСМН, уголА=уголСНМ как соответственные, МН=1/2АВ=4х/2=2х, в подобных треугольниках площади относятся как квадраты соответствующих сторон, АВ²/МН²=площадьАВС/площадьМСН, 16х²/4²=площадьАВС/площадьМСН,, т.е площадь АВС составляет 4 части, а площадь МСН=1 части, на долю АВМН=4-1=3 части=24, 1 часть=24/3=8=площадьМСН
Дано:
MNP - треугольник
<M = 35
<N = 90
MN = 14 см
Найти:
PN = ?
MP = ?
< P = ?
Так, как в треугольнике сумма всех углов равна 180°, то>
<P = 180 - (<N+<M) = 180 - (35+90) = 180 - 125 = 55°
-------------------------------------------------------------------------------------
ЕСЛИ ВЫ НЕ ПРОХОДИТЕ СИНУСЫ В ДАННЫЙ МОМЕНТ, ТО ДАННОЕ РЕШЕНИЕ НЕ ДЛЯ ВАС!
Данную задачу можно решить с теоремы синусов, которая утверждает, что стороны треугольника пропорциональны синусам противолежащих углов.
Значит:
MN/sin(<P) = NP/sin(<M) = MP/sin(<N) =>
14/sin(55) = NP/sin(35) , 14*sin(35)/sin(55) = NP
14/sin(55) = MP/sin(90), 14*sin(90) / sin(55) = MP = 14/sin(55)
PN = 14*sin(35)/sin(55)
MP = 14/sin(55)
<P = 55°
Вроде правильно....