Задание 2. Решить с оформлением (дано, рисунок, доказательство) №1
No1: в треугольнике KMN известно, что KD и MC - медианы. О - центр описанной
окружности около треугольника KMN является также и точкой пересечения медиан KD
и МС. Доказать, что треугольник KMN - равносторонний.
находим площади треугольников по формуле герона:
S=rad(p(p-a)(p-b)(p-c))
rad-корень
p-полупериметр
a,b,c-стороны треугольника
1)Находим полупериметр:
(формула: p=(a+b+c)/2)
полупериметр первого треугольника:
p=(5+8+12)/2
p=12,5cm
полупериметр второго треугольника:
p=(15+24+36)/2
p=37,5cm
2)Находим площадь:
площадь первого треугольника:
S1=rad(12,5(12,5-5)(12,5-8)(12,5-12))
S1=rad(12,5×7,5×4,5×0,5)
S1=(15rad15)4
площадь второго треугольника:
S2=rad(37,5(37,5-15)(37,5-24)(37,5-36))
S2=rad(37,5×22,5×13,5×0,5)
S2=(135rad5)/4
3)Находим отношение площадей:
S1/S2=((15rad15)/4)/((135rad5)/4)
S1/S2=(rad3)/9
возьмём треугольник авс (ав=вс). Так как треугольник равнобедренный по условию, тогда углы при основании будут равны (180-120)/2=30 градусов.
Дальше по теореме синусов ас/sinb=bs/sina. то есть:
х/sin120=12/sin30
Тогда х=(12*sin120)/sin 30=(12*(корень из 3)/2)*2/1=12 корень из 3.
Проведём высоту вн. Так как треугольник равнобедренный, высота будет медианой и ан=нс=12 корень из 3/2=6 корень из 3.
Рассмотрим прямоугольный треугольник авн, образованный высотой вн и стороной ав, где ав=12 см по условию, а ан=6 корень из 3. По теореме Пифагора найдём длину катета вн.
аb^2=ah^2+bh^2
bh^2=ab^2-ah^2
bh^2=144-108
bh^2=36
bh=6 см
ответ: 6 см.