Задание 2. В стране Озёрная 7 озер, соединенных между собой 10 непересекающимися каналами, причём от каждого озера можно доплыть до любого другого. Сколько в этой стране островов? Нарисуйте получившийся граф.
1)Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, значит CH=√AH*BH ,
CH=√3*6=3√2.
2)В первом треугольнике из сторон 2см, 3см и 4см БОЛЬШЕЙ является 4см. Сходственная сторона в другом треугольнике 36см. Найдем коэффициентом подобия - число k, равное отношению сходственных сторон подобных треугольников : к=4/26=1/9.
Р₁=2+3+4=9 (см)
Отношение периметров подобных треугольников равно коэффициенту подобия: Р₁:Р₂=к , 9:Р₂=1/9 ,Р₂=81 .
Рассмотрим равнобедренный треугольник ABC с боковыми сторонами AB = BC и основанием AC.
Опустим из вершины B высоту BH на основание AC.
Рассмотрим треугольники ABH и BCH.
Так как BH - высота, то углы BHA = BHC = 90°, т.е. треугольники ABH и BCH - прямоугольные.
Заметим, что AB = BC, т.е. гипотенузы треугольников ABH и BCH равны и у них общий катет BH.
Следовательно, треугольники ABH и BCH конгруэнтны по гипотенузе и катету.
Отсюда вытекает, что AH = CH, а это означает, что BH является медианой.
Также из равенства треугольников ABH и BCH имеем, что углы ABH = CBH.
Следовательно, BH является биссектрисой угла ABC.
Объяснение:
1)Высота, проведенная к гипотенузе, есть среднее пропорциональное между проекциями катетов на гипотенузу, значит CH=√AH*BH ,
CH=√3*6=3√2.
2)В первом треугольнике из сторон 2см, 3см и 4см БОЛЬШЕЙ является 4см. Сходственная сторона в другом треугольнике 36см. Найдем коэффициентом подобия - число k, равное отношению сходственных сторон подобных треугольников : к=4/26=1/9.
Р₁=2+3+4=9 (см)
Отношение периметров подобных треугольников равно коэффициенту подобия: Р₁:Р₂=к , 9:Р₂=1/9 ,Р₂=81 .
3)