Задание 4. Дан треугольник АВС и точка О. Построить фигуру F, на которою отображается данный треугольник при повороте вокруг центра О на 750 против часовой стрелки
1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
A1. Две прямые на плоскости называются параллельными, если они:
4) не пересекаются
А2. Один из признаков параллельности двух прямых гласит:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А3. Выберите утверждение, являющееся аксиомой параллельных прямых:
Через точку, не лежащую на данной прямой, проходит только одна прямая, параллельная данной
А4. Если две параллельные прямые пересечены секущей, то:
Соответственные углы равны
А5. Если прямая перпендикулярна одной из двух параллельных прямых, то:
Она перпендикулярна и другой
А6. Всякая теорема состоит из нескольких частей:
Условия и заключения
А7. При пересечении двух прямых секущей образуются углы, имеющие специальные названия:
Накрест лежащие, соответственные, односторонние
А8. Аксиома – это:
Положение геометрии, не требующее доказательства
А9. Выберите утверждение, которое является признаком параллельности прямых:
Если при пересечении двух прямых секущей накрест лежащие углы равны, то прямые параллельны
А10. Если прямая не пересекает одну из двух параллельных прямых, то:
Другую прямую она тоже не пересекает
или
С другой прямой она совпадает
1. Аксиома – это очевидные положения геометрии, не требующие доказательств.
2. Через точку, не лежащую на данной прямой, проходит
а) только одна прямая, параллельная данной.
3. Не может быть следствием аксиомы или теоремы:
а) утверждение, не требующее доказательств.
4. Следствия аксиомы параллельных прямых:
б) если две прямые параллельны третьей прямой, то они параллельны друг другу.
в) если прямая пересекает одну из параллельных прямых, то она пересекает и другую.
г) если три прямые параллельны, то любые две из них параллельны друг другу.
5. Если через точку, лежащую вне прямой, проведено несколько прямых, то сколько из них пересекаются с исходной прямой?
б) все, кроме параллельной прямой.
6. Если одна из прямых, проходящих через точку, лежащую вне заданной прямой, параллельна этой прямой, то другие прямые, проходящие через точку, не могут быть ей параллельны, потому что
а) это противоречит аксиоме параллельных прямых.