соединям концы хорды АВ с центром О, треугольник АОВ равнобедренный АО=ВО=радиус, проводим высоту ОН на АВ, высота=медиане АН=ВН=АВ/2=8/2=4, ,ОН=3, Треугольник АНО прямоугольный, АО =радиусу = гипотенузе=корень(АН в квадрате + ОН в квадрате)=
=корень (16+9) =5, радиус=5
соединяем концы хорды СД с центром О, треугольник СОД равнобедренный, проводим высоту=медиане ОМ на СД, СМ=МД, ОМ=4, треугольник ОСМ прямоугольный СМ катет=
=корень(ОС (радиус) в квадрате - ОМ в квадрате) = корень (25-16)=3
соединям концы хорды АВ с центром О, треугольник АОВ равнобедренный АО=ВО=радиус, проводим высоту ОН на АВ, высота=медиане АН=ВН=АВ/2=8/2=4, ,ОН=3, Треугольник АНО прямоугольный, АО =радиусу = гипотенузе=корень(АН в квадрате + ОН в квадрате)=
=корень (16+9) =5, радиус=5
соединяем концы хорды СД с центром О, треугольник СОД равнобедренный, проводим высоту=медиане ОМ на СД, СМ=МД, ОМ=4, треугольник ОСМ прямоугольный СМ катет=
=корень(ОС (радиус) в квадрате - ОМ в квадрате) = корень (25-16)=3
СД=2 х СМ=2 х 3 =6
0)
Дана правильная шестиугольная пирамида ABCDEFO с высотой ОН.
Рассмотрим прямоугольный треугольник АНО.
АО=13, ОН=12.
АН=5, следовательно АВ=ВС=...=AF=5 (сторона прав. 6-угольника равна радиусу опис. окр.)
Sосн = (3 корня из 3) *a^2 / 2
S = 37,5 корней и з3
Vпир = 1/3 * Sосн * H
V = 150 корней из 3.
1)
Да, получается 120, т.к. объем конуса в 3 раза меньше объема цилиндра.
2)
Дана правильная треугольная приамида ABCD с высотой DO.
Рассмотрим треугольник АВС - равносторонний.
Проведем медиану (высоту и бис-су) АК.
ВК=КС=корень из 3.
Рассмотрим треугольник АКС - прямоугольный.
Найдем АК по т.Пифагора.
АК = 3. Следовательно АО = 2 (медианы точкой пересечения делятся 2:1, считая от вершины).
Рассмотрим треугольник AOD - прямоугольный.
Угол DAO = 60, следовательно угол ADO = 30.
Катет, лежащий напротив угла в 30 градусов, равен половине гипотенузы.
AD = 4.
DO = 2 корня из 3
Радиус описанной окружности около правильного треугольника равен
r = a / корень из 3
r = 2
Vкон = 1/3 * пи *r^2 *H
V = 8корней из 3 / 3 пи