Задание 5 ( ). Задана прямоугольная трапеция ABCD. Большее основание AD = 18 см. Большая боковая сторона CD = 16 см. Найдите площадь трапеции, если её острый угол равен 60°.
Пусть основание 5 см, диагональ 4 см. а боковая сторона 3 см. Проводим горизонтальный отрезок АВ длиной 5 см. Это будет основание. Ставим ножку циркуля в точку А и проводим окружность в верхней полуплоскости радиусом 3 см. Ставим ножку циркуля в точку В и проводим окружность в верхней полуплоскости радиусом 4 см. Пересечение - точка D. Через нее проводим прямую а параллельно АВ. Ставим ножку циркуля в точку В и проводим окружность радиусом 3 см, отмечаем пересечение окружности и прямой а - точка С. Соединяем А,В,С,D,Aю Готово. Окружности можно проводить не полностью, а до тех пор, пока не получится точка пересечения. Лучше, конечно, один раз увидеть, чем 5 раз прочитать.
1) Пусть a и b - два данных вектора. Если вектор р представлен в виде p=xa+yb, где х и у -некоторые числа, то говорят, что вектор р разложен по векторам a и b. Числа х и у называются коэффициентами разложения.
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат. Для координат векторов справедливы следующие свойства: 1. Каждая координата суммы векторов равна сумме соответствующих координат. 2. Каждая координата разности векторов равна разности соответствующих координат. 3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число. 4. Каждая координата вектора равна разности соответствующих координат его конца и начала.
Проводим горизонтальный отрезок АВ длиной 5 см. Это будет основание.
Ставим ножку циркуля в точку А и проводим окружность в верхней полуплоскости радиусом 3 см.
Ставим ножку циркуля в точку В и проводим окружность в верхней полуплоскости радиусом 4 см.
Пересечение - точка D. Через нее проводим прямую а параллельно АВ.
Ставим ножку циркуля в точку В и проводим окружность радиусом 3 см, отмечаем пересечение окружности и прямой а - точка С.
Соединяем А,В,С,D,Aю Готово. Окружности можно проводить не полностью, а до тех пор, пока не получится точка пересечения. Лучше, конечно, один раз увидеть, чем 5 раз прочитать.
2) Отложим от точки О два единичных вектора, направление которых совпадает с направлениями координатных осей. Эти векторы обозначаются i и j и называются координатными векторами. Так как координатные вектора не коллинеарны, то любой вектор р можно представить в виде p=xi+yj. Числа х и у называются координатами вектора в данной системе координат.
Для координат векторов справедливы следующие свойства:
1. Каждая координата суммы векторов равна сумме соответствующих координат.
2. Каждая координата разности векторов равна разности соответствующих координат.
3. Каждая координата произведения вектора на число равна произведению соответствующей координаты вектора на это число.
4. Каждая координата вектора равна разности соответствующих координат его конца и начала.